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Abstract This paper describes ongoing research on building software to be comprehensible to its users so
that they can tailor it to their needs in the field. Our test-bed is a computing stack calledMu that deemphasizes
a clean interface in favor of a few global implementation properties: small implementation size, few distinct
notations, parsimonious dependencies, a simple dependency graph that avoids cycles, and early warning on
breaking changes. Assuming a 32-bit x86 processor and (for now) a basic third-party Unix-like kernel, Mu
builds up from raw machine code to a memory-safe but less expressive language than C.

Our approach to keeping software comprehensible is to reduce information hiding and abstraction, and
instead encourage curiosity about internals. Our hypothesis is that abstractions help insiders who understand
a project but hinder newcomers who understand only that project’s domain. Where recent efforts to create
“bicycles for the mind” have tended to focus on reducing learning time and effort, we explore organizing the
curriculum to be incrementally useful, providing an hour of actionable value for an hour (or three) of study.
The hope is that rewarding curiosity will stimulate curiosity in a virtuous cycle, so that more people are
motivated to study and reflect on the difference between good vs bad design and good vs bad architecture,
even as the study takes place over a lifetime of specialization in other domains. Spreading expertise in design
is essential to the creation of a better society of more empowered citizens. Software tools have a role to play
in this process, both by exemplifying good design and by providing visceral illustrations of the consequences
of design choices.
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Bicycles for the mind have to be see-through

1 Introduction

In order for code to be living structure,
even the tools used to make the code
need to be living structure.

Christopher Alexander

In “Tools for conviviality” [12], Ivan Illich describes two schools of tool-making, the
means by which humans influence their environment. Manipulative tools focus on
immediate productivity. They use what’s easily available and convenient to use, and
build on it. Little attention is given to the process by which tools are created, leading
to deep dependency chains of tools that need other tools to be built. Over time, special
interests capture the apparatus of tool-making and management. Flaws in specific
tools are papered over with more tools. What used to be considered the means toward
some other end gradually turn into ends in themselves, their production and nurturing
requiring increasing quantities of manpower, from people not motivated to work on
this endeavor and therefore needing increasing amounts of management.
In response, Illich proposes an alternative school he calls convivial tools. According

to him, the primary goal when making a tool shouldn’t be to just make some tactical
activity more convenient. Instead, it should be to preserve the degrees of freedom of
individuals as we explore alternative combinations of human and machine. Individuals
should decide for themselves the uses to put their own manpower to. We should
celebrate tools that preserve individual agency, and shun tools that reduce human
agency. Concretely, if a tool doesn’t do quite what you need, don’t try to paper over
its deficiencies with a second tool. The maintenance burden of both will lead to
compounding claims on your time, and on the time of others, thereby reducing the
degrees of freedom of human society as a whole. Instead, take the first tool out, and
think about the problem anew.
Taking tools out of existing workflows is difficult. Our social arrangements incline us

to take artifacts for granted once they’ve been introduced (and experience some level
of adoption). People accultured in our society tend to expect a level of specialization,
with problems partitioned according to fairly static boundaries. Most people’s careers
are circumscribed by these boundaries. If we grow used to something that we don’t
know how to build or manage, the prospect of losing it is painful.
If we stipulate that Illich’s goal is desirable, the problem then becomes how to

encourage greater dissemination of knowledge about tools. How do we build tools
that can be maintained by end users in the field, without support from authors and
experts? The Mu project explores one approach to this problem in the domain of
software: to support modification in the field, keep everything simple enough to be
comprehensible by anyone, without exception. Mu is a computing stack designed
from the ground up:

to have a strict complexity budget, to “fit in a single brain”;
to not grow complex over time; and
to reward curiosity, and encourage people to understand its internals.
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These goals stem from three major influences. In chasing large-scale comprehension
without access to original authors, we try to follow the dictums of Peter Naur [19]
and add detail to them. In emphasizing degrees of freedom for end users, we follow
Christopher Alexander [1], particularly as recounted by Richard Gabriel [6]. In deem-
phasizing black boxes, we follow the observations of Gregor Kiczales [16] and the
dialectic between his criticisms and the lessons of Parnas [20] and others.
This paper reports on progress towards these goals. Our hypothesis is that using

fewer abstractions—carefully designed to leak in just the right ways—can make the
maintenance task more approachable to end users.
We don’t have a definitive conclusion yet on the efficacy of this approach. If we

fail to falsify our hypothesis, we’d like for Mu to demonstrate an alternative way
for people to collaborate over software: by exchanging complete working stacks (all
software running on a computer, with the possible exception of firmware) designed
to be manually merged for individual contexts.

Strategies

Mu aims to accomplish these goals using the following strategies:

1. It almost unfailingly implements high-level constructs out of lower-level ones.
Dependencies flow ‘down’, and we avoid cycles in the dependency graph as far as
possible.

2. It uses as little mainstream code (interface-driven, built with whatever’s handy,
indirectly depending on C) as possible.

3. It uses as few notations (languages, syntaxes, intermediate representations) as
possible.

4. It prioritizes safety over syntactic convenience.
5. It focuses on encoding intention. The ideal: if making a change raises no errors,

then no regressions should have occurred. If an error is raised, it should be obvious
to an end-user that the expected behavior is superior to the erroneous behavior.

6. It encourages users to fork it, both technically and socially.

Here’s how these strategies support Mu’s goals:

Minimizing dependencies reduces the number of moving parts and therefore the
total cognitive load of the stack. Keeping dependencies decomplected [10] also aids
comprehension. When learning a strange new codebase by oneself, metacircular
implementations are hard to understand; they can seem like circular reasoning.
Mainstream software isn’t as disciplined about avoiding or topologically sorting
dependencies. Using it violates the previous rationale.
Mainstream software is usually designed to hide implementation details behind an
interface, which goes against our plan to expose implementation details but keep
them simple.
Any mainstream software we introduce is a source of noise when we try to falsify
our hypothesis. We’d like to be confident in a negative result rather than wonder if,
say, the C compiler we used hindered full-stack comprehension.
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All notations may need at some point to be learned by an end-user, so it seems
worth restricting their numbers. While notation is a tool of thought [13], many
different notations can be a hindrance to thought.
Deemphasizing syntax reduces implementation size at the lower levels of the stack.
Deemphasizing syntax causes source code to be closer to generated code, and
the programmer’s mental model to be closer to the machine. The programmer is
habituated to communicate precise intent (and discover it in the process) rather
than expect the machine to make (inevitably fallible) assumptions.
Reified intention (using types and tests) provides early warning of breakage when
the system is modified by outsiders; outsiders can’t be expected to have the context
of the project’s development history or capabilities for thorough manual testing.
Forks provide an escape hatch for sub-communities of end-users to bud off as their
needs diverge, deleting features they don’t use to compensate for new features they
do need. Tests can help divergent sub-communities continue to share features with
a bounded amount of effort.

Prior approaches

These strategies borrow from much past work. For example, Forth systems [3, 21]
emphasize parsimonious dependencies (Strategies 1 and 2 above) but give up on safety
(Strategy 4) in the process. Smalltalk systems [7] emphasize safety (like many other
high-level languages) while exposing a large fraction of their internals. However, there
usually remains a kernel that requires exiting Smalltalk to modify. Lisp Machines [8]
built up all the way from custom hardware (Strategy 1) while remaining safe. Lisp,
Forth and Smalltalk all emphasize uniform notation (Strategy 3), though they also
have strong and divergent opinions on what that notation should be. While they all
expose their internals to modification in various structured ways, it seems easy for
small modifications to their internals to cause regressions both subtle and catastrophic.
Modification requires expertise of all the scenarios their environments are designed
to handle, expertise that can only be obtained out of band from the tools themselves.
The STEPS project [15] explored ways to construct a complete stack with low

implementation effort. Mu tries to follow in its spirit, while being more parsimonious
with dependencies and notations. The work of Basman and Tchernavskij [2] describes
a mature society based on forking (Strategy 6) that we aim towards.

2 An Austere Stack

As mentioned above, Mu is parsimonious with its dependencies. At run time, Mu
packages programs either as ELF binaries running on Linux or as bootable disk images
bundled with a third-party Unix-like kernel. Mu programs don’t rely on libc or any
other mainstream libraries. Eventually we will build the OS kernel in Mu as well.
At build time, Mu is designed to be parsimonious with its dependencies but also

easy for a newcomer to build. It can be built using two approaches. First, it can be
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bootstrapped on any Unix-like platform with a C (and C++) compiler. Second, once a
Mu machine is bootstrapped, Mu can build itself without any further reliance on C
(barring the OS kernel). These two approaches have complementary strengths and
weaknesses; C is relatively familiar but C compilers have large dependency trees,
while Mu as we’ll see later looks strange but only relies on a few generic OS syscalls
and is easy to audit. Both approaches emit identical binaries, permitting diverse double
compilation [24] to counter the Thompson-Karger “trusting trust” attack [14, 22].

Mu Translator (section 4)
(written in SubX with syntax sugar)

SubX Syntax Sugar Rewriter (section 3)
(written in SubX without syntax sugar)

Self-hosted SubX Translator (section 2.2)
(written in SubX without syntax sugar)

Bootstrap SubX Translator
(written in C++)

OS kernel
(written in C)

Mu

SubX with syntax sugar

SubX without syntax sugar

ELF binary ELF binary

Figure 1 Building Mu programs. Edges represent languages, while nodes represent tools and
indicate the language they’re implemented in. Most nodes are built in the language
they emit (green). Only the self-hosted translator is metacircular (red). The self-
hosted and bootstrap translators emit identical ELF binaries given identical source
programs. The clouds highlight areas that still depend on mainstream software.

Figure 1 shows the toolchain graphically and provides an overview of the rest of
this paper. The Mu computing stack provides two notations: an unsafe notation for
machine code (called SubX) and a type-safe and memory-safe statement-oriented
language (eponymously called Mu) that mostly translates 1:1 to machine code. In each
notation we try to do as much as possible with localized rewrite rules (syntax sugar).
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2.1 Bedrock: the 32-bit x86 instruction set

Currently Mu supports only the Intel x86 instruction set. Portability is explicitly a non-
goal. Portability guarantees require extra effort to maintain, and can be particularly
challenging for newcomers who may not be inclined to ensure their changes work on
platforms they don’t regularly run. Rather than attempt to fight a losing battle, we
retreat from it entirely.
Mu supports only a regular subset of the entire x86 instruction set, mostly restricting

itself to 32-bit instructions that have been widely available since 1990. Since we also
only rely on a bare minimum of features from the OS kernel, Mu programs should be
easy to get up and running on any computer people have access to (though they do
currently require access to a Unix for bootstrapping). Currently we only support integer
operations. We will eventually support a similarly regular subset of floating-point
operations.
As Figure 1 shows, at the lowest levels our goal is to come up with a reasonably

ergonomic syntax for x86 machine code that can be implemented in itself. Given this
hard constraint, we don’t try to abstract over the underlying machine. Programmers
working at this level are exposed to the constraints and complexities of the instruction
set. Given that, it’s worth taking some time to take stock of it.
The x86 instruction set is variable-length; instructions may be anywhere from 1

to 14 bytes long and contain various subsets of 13 different arguments in addition to
a variable-length opcode that designates the operation to be performed. Arguments
range in size from 2 to 32 bits in length, and multiple arguments are often packed to
share a single byte.
It has 8 32-bit registers and 8 overlapping 8-bit registers. It addresses RAM by byte

even though most operations read and write 4 bytes at a time.
It supports the usual complement of instructions: arithmetic or logical operations,

jumps, pushes and pops, function call and return instructions. Most instructions
operate on no more than 2 operands.
It supports a fairly baroque set of addressing modes. Each instruction can access at

most one memory location. The task of the addressing mode is to determine operands
based on arguments in the bitfields of an instruction.

2.2 SubX: a habitable notation for programming in machine code

At this point it’s worth taking a step back to think about why we don’t all program in
machine code, at least in place of unsafe languages. Ignoring aesthetics, there are
some essential difficulties:

Binary is not a good fit for human senses.
Packing bits into bytes is error-prone.
A variable instruction set requires path-dependent encoding. Small errors in one
instruction can cause later opcodes to silently be interpreted as arguments and
vice versa. Errors may manifest unboundedly far from their root causes, making
diagnosis intractable.
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Computing offsets for jumps is error-prone.
Various other error conditions can yield terse or cryptic results.

Given our tight complexity budget for a self-hosted syntax, these difficulties are our
top priorities. To begin, we follow a long tradition (e.g. Edmund Grimley Evans [9])
and write programs in a hexadecimal representation of ASCII bytes, converting them
to binary before running them. The rest of the stack can now work with programs as
textual representations of numbers.

Metadata: While machine code consists of undifferentiated numbers, mixing in some
redundant information can help improve the quality and timeliness of errors. Conven-
tional Assembly languages do so by creating mnemonics for opcodes and translating
mnemonics and operands into machine code. However, Assembly mnemonics can
often expand to multiple opcodes depending on the arguments, and translation can
get complex. Translating opcodes can also convolute the logic for good error messages.
For example, Assemblers may need to inform the programmer that there’s just no
instruction in x86 to multiply ecx by edx.
For easy translation and simple but robust error messages, we work with numbers

directly, but appendmetadata to them after a slash. Here are some example instructions
in SubX, illustrating the simple and the complex:

c3/return

68/push 4/imm32

0f 82/jump-if-lesser 4/disp32

8b/copy 0/mod/indirect 1/rm32/ecx 8/disp8 0/r32/eax

Instructions always occur one to a line. Only the numbers at the start of each word
represent computation encoded in the final binary. The rest of each word is metadata.
In the first two instructions the metadata is relatively easy to read. The third example
demonstrates an instruction with multiple opcodes. The fourth example looks up
memory at the address in ecx and saves the result to eax.
The SubX translator ignores unrecognizedmetadata. In the above examples ‘/return’,

‘/push’ and ‘/ecx’ are just comments for human readers. However, metadata can also
affect translation by labeling arguments to be processed in different ways. As the SubX
translator processes opcodes, it checks for expected argument labels. For example, it
expects the opcode ‘68’ (‘push’) to provide a single argument and for that argument
to be labeled with ‘/imm32’. Any discrepancies are immediately flagged as translation
errors. In more complex instructions, metadata also permit the SubX translator to
perform the tedious task of packing bitfields into bytes and ordering them correctly.

Labels: Like Assembly languages, SubX provides facilities for binding addresses
to memorable names using labels that get automatically replaced with either their
absolute address or a displacement relative to the current instruction. Labels naming
functions are distinguished. Jumps across functions are illegal, as are calls to labels
within functions.
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String literals: One major advance over Assembly languages is support for string
literals. In SubX you can provide a string literal anywhere an address is expected. The
translator creates room for the string literal elsewhere and replaces the reference to
it with its new address.
Supporting string literals adds some complexity to the SubX parser and label

translation, but they’re deemed essential because they enable a key feature: automated
tests that can give helpful error messages when they fail. Colocating failure messages
next to their use is essential to self-documenting tests.

Tests: As mentioned above, tests are an essential component of programming in
machine code using SubX, and they’re provided right from the start. The mechanism
for tests is merely a special function called ‘run-tests’ that is automatically code-
generated for each program. When called, it calls all functions in the program that
start with the prefix ‘test-’. Given this mechanism, everything else can be built into
the vocabulary of functions.
Tests are particularly essential when programming in machine code because there

is no task so simple that I1 get it right the first time.

Summary: That completes our quick tour of the core of SubX: hexadecimal numbers,
metadata, labels, string literals and an automatically generated test harness. Figure 2
shows these features interacting in a larger code sample.
All of SubX’s features are implemented twice: once in the bootstrap C++ translator

and a second time in the self-hosted translator written in SubX. All these mechanisms
were straightforward enough that the two translators are able to stay in sync over a
year, build programs reproducibly, and emit identical binaries given identical sources.
The C++ translator requires less than 3k LoC (including comments, whitespace and

tests). The self-hosted translator is built as a pipeline of phases, each reading from
‘stdin’ and writing to ‘stdout’. Each phase is small and includes thorough automated
tests to aid comprehension. From the bottom up:

hex: converts hexadecimal bytes into a binary file. 1400 lines of SubX, 150 excluding
comments and tests, 5KB binary.
survey: translates labels into addresses, and computes the ELF header. 5k lines of
SubX, 900 excluding comments and tests, 10KB binary.
pack: combines bitfields into bytes. 6k lines of SubX, 840 excluding comments and
tests, 7.5KB binary.
dquotes: translates string literals into labels. 2k lines of SubX, 380 excluding com-
ments and tests, 6.5KB binary.
tests: code-generates the ‘run-tests’ function. 300 lines of SubX, 130 excluding
comments and tests, 6KB binary.

1 This paper uses the first person plural to acknowledge collaboration with others on the Mu
project, but the first person singular when referring to its author.
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Figure 2 An example function (in orange, for computing the factorial of an integer) and a
test for it (in green), written in the SubX notation without any syntax sugar. A
discipline of tabular organization, label naming and comments at multiple levels of
detail help the human manage complexity.

Line counts above don’t include the common vocabulary of functions, but its usage
is reflected in binary sizes. One caveat with the self-hosted translator: it currently
provides no error-checking. We currently rely on the C++ translator for good error mes-
sages. Development so far has focused on build- and run-time tools; the development
environment will also eventually be ported over.
All told, we’ve written some 40k lines of machine code using the SubX notation.

The crucial hypothesis in designing it was that the implementation properties of
parsimonious dependencies and minimal metacircularity trump superficial aesthetics
of the syntax. Experience shows that while it may look strange at first, especially
when read passively, it’s easy to comprehend with a tight interactive loop of making
changes and rerunning tests.

2.3 Debugging SubX programs

While it is relatively painless to gain fluency in SubX, debugging programs in machine
code remains challenging. The computational substrate is fundamentally unsafe; the
only error messages available are the ones that were manually added. Mu’s minimal
ELF binaries don’t include any debugging information. Instead of relying on interactive
debuggers, SubX relies on some unconventional tools.
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Emulation Before we built the SubX translator, we first implemented an emulator in
C (7k LoC) for the subset of x86 machine code supported by SubX. Emulating ELF file
loading and instruction execution provides the opportunity for greater error checking.

Figure 3 Screenshot of the trace browser for time-travel debugging. Top: some instructions
executed, along with a highlighted ‘cursor line’. Bottom: the screen after drilling
down into the cursor line, revealing details about the ‘call’ instruction as well as the
instructions executed in the callee (lighter background color). The leftmost column
shows the depth of each line.

Traces and time-travel debugging: Emulated runs can be configured to emit a trace
of instructions as they are executed, including after each instruction the state of
registers and symbolic labels as they are reached. Traces cheaply provide the benefits
of time-travel debugging, allowing us to step forwards or back through a program’s
execution at will.
Traces can get quite voluminous. To help slice and dice them we annotate each

line of the trace with a ‘depth’, and use a trace browser, a zoomable UI in text mode
that folds away instructions at lower depths. This setup allows us to hide the details
inside function calls and individual instructions. The trace browser allows us to gain
an overview of a run and selectively drill down as needed. Figure 3 demonstrates the
trace browser and a drill-down operation.
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Watch points: While traces emit register state after each instruction, it’s prohibitive
to emit the contents of memory. To answer questions about when a location was last
modified and by whom, we use watch points. As it executes instructions, the SubX
emulator monitors for labels that start with a ‘$watch-’ prefix. When it encounters
one, it saves the computed effective address and starts emitting its value after every
time step. This instrumentation allows us to determine, for any point in the trace, the
call stack of the instruction that last modified any watched address.

Summary: One attribute these techniques share is a high “power-to-weight ratio”.
They take very little code to implement, and once implemented they are robust
and work reliably. The key skill when using them is one familiar to anyone used to
debugging by inserting ‘print’ statements: to not be afraid to modify the program
as we debug it. A little extra time spent tuning the trace can cause most bugs to
become obvious. Tools to scale up debug-by-print seem like a promising area of
further research.

3 Syntax sugar for SubX

As Figure 2 shows, we give up a lot of syntactic ergonomics when using SubX. Now
that we have a baseline that satisfies the implementation properties we care about,
it’s worth trying to reclaim some syntactic niceties at low complexity cost. The passes
in this section are no longer implemented in C++, only in SubX. They do their own
error handling.

3.1 Addressing modes

As we mentioned above, x86 instructions may have up to 13 logical arguments that help
determine up to two operands. The first operand is specified by providing at most one
of 7 arguments, specifying either a register or a literal encoded in the instruction itself
(/r32, /imm8 /imm16, /imm32, /disp8, /disp16 and /disp32). The bulk of complexity
lies in the second (‘reg/mem’) operand, which can be specified by various combinations
of 7 arguments:

/mod
/rm32
/base
/index
/scale
/disp8
/disp32

The first bit of syntax sugar follows conventional Assembly languages and provides a
concise syntax for specifying the ‘reg/mem’ operand. In EBNF [25] with ‘[]’ surrounding
optional tokens:
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Figure 4 The function and test of Figure 2 rewritten to use syntax sugar for addressing modes.

reg/mem ::= direct | indirect | offset | indexed | constant

direct ::= ‘%’ register

indirect ::= ‘*’ register

offset ::= ‘*(’ register ‘+’ disp ‘)’

indexed ::= ‘*(’ register ‘+’ index [‘<<’ scale] [‘+’ disp] ‘)’

constant ::= ‘*’ label

register ::= ‘eax’ | ‘ecx’ | ‘edx’ | ‘ebx’ | ‘esp’ | ‘ebp’ | ‘esi’ | ‘edi’

label ::= non-register identifier

disp ::= 32-bit integer

scale ::= 2-bit integer

Some example expressions:

%eax
*edx
*(esi+4)
*(eax + ecx<<2 + 8)
*Total-widgets
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Whitespace is permitted within parentheses, but not immediately after the ‘%’ or ‘*’
sigils. Metadata is not permitted within parentheses, so as to keep expressions visually
short.
Such expressions are translated using the following 5 rewrite rules, where words in

bold are variables, and ‘N()’ converts a string register name to its 3-bit code:

1. ‘%reg’ =⇒ ‘3/mod N(reg)/rm32’
2. ‘*reg’ =⇒ ‘0/mod N(reg)/rm32’
3. ‘*Label’ =⇒ ‘0/mod 5/rm32 Label/rm32’
4. ‘*(reg + disp)’ =⇒ ‘2/mod N(reg)/rm32 disp/disp32’
5. ‘*(base + index << scale + disp)’
=⇒ ‘2/mod 4/rm32 N(base)/base N(index)/index scale/scale disp/disp32’

Armed with this syntax sugar, we can now rewrite the code of Figure 2 into Figure 4.
Tabular organization is no longer required. Implementing this syntax sugar requires
4.6k lines of SubX, 900 excluding comments and tests, and the resulting binary is
9KB large.

3.2 Function calls

The new syntax for addressing modes now enables a nice syntax for function calls.
In raw x86 (assuming a relatively standard calling convention), function calls re-
quire pushing arguments on the stack, performing a ‘e8/call’, and then popping the
arguments off the stack. (Results are typically returned in registers.)

Figure 5 The function and test of Figure 4 rewritten to use syntax sugar for function calls.

x86 has an instruction to push a ‘reg/mem’ operand, which allows us to rewrite a
syntax like this:

(find-next %eax "/" 3)

...into this:

# push args in reverse order

68/push 3/imm32
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68/push "/"/imm32

ff 6/subop/push %eax

# call

e8/call find-next/disp32

# pop args

81 0/subop/add %esp 0xc/imm32

Observe the clean composability of string literals, addressing mode expressions and
numbers. The only minor details here are selecting the right push opcode for literals
vs non-literals, and computing the number of bytes to pop off the stack.

Armed with this syntax sugar, we can now rewrite the code of Figure 4 into Figure 5.
Low-level comments in grey now turn rare. Implementing this syntax sugar requires
1.8k lines of SubX, 450 excluding comments and tests, and the resulting binary is 7KB
large.

3.3 Structured control flow

The final bit of syntax sugar that seems to provide a high power-to-weight ratio is
the elimination of unstructured jumps in favor of structured conditionals and loops.
Assembly languages either don’t provide syntax for structured control flow, or carve out
exceptions to their statement-oriented nature to support recursive syntax. SubX does
neither, but instead supports a simpler syntax that sticks to the statement-oriented
nature of the underlying machine. The conventional syntax for a conditional:

if (%eax == 0) {

...

}

...is expressed in SubX as:

{

81 7/subop/compare %eax 0/imm32

75/jump-if-not-equal break/disp8

...

}

Each ‘break’ label is translated into the location of the containing ‘}’. Similarly, the
conventional syntax for a loop:

while (%eax == 0) {

...

}

...is expressed in SubX as:

{

81 7/subop/compare %eax 0/imm32

75/jump-if-not-equal break/disp8

...

eb/jump loop/disp8

}
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The ‘loop’ label is translated into the location of the containing ‘{’:

_loop1:

81 7/subop/compare %eax 0/imm32

75/jump-if-not-equal _break1/disp8

...

eb/jump _loop1/disp8

_break1:

The SubX translator ensures that curly brackets are balanced, and replaces each
matching pair with a unique pair of label names.

Figure 6 The function and test of Figure 5 rewritten to use syntax sugar for structured control
flow.

Armed with this syntax sugar, we can now rewrite the code of Figure 5 into Figure 6.
Labels now become rare. Implementing this syntax sugar requires 360 lines (using
syntax sugar for function calls), 120 excluding comments and tests, and the resulting
binary is 6KB large.

Summary: This concludes our tour of SubX, spanning the core notation as well as
syntax sugar. To translate SubX programs into ELF binaries, we pass them through a
shell pipeline composed of all the phases outlined so far:

cat $* |braces |calls |sigils |tests |dquotes |pack |survey |hex > a.elf

Except for the bootstrap 3kLoC C++ translator, the entire stack and any programs
running on it require zero external dependencies for building. Only a minimal Unix-
like OS kernel is required for running.

4 Mu: A low-level yet type-safe and memory-safe language

SubX helps us minimize dependencies on mainstream software. In this section we
describe how we build on SubX to obtain a memory-safe language: Mu. Since we
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now have a fairly habitable [5] notation, we can expand our ambitions a bit. However,
we’re still fairly parsimonious in the features we introduce since the implementation
language is unsafe.
Mu’s trajectory follows that of early C to some extent; both languages were im-

plemented without a high-level language, and so implementation simplicity was
important. However Mu learns from the trajectory of C, where compilers became
metacircular at the first opportunity, and the availability of a high-level language for
implementation has caused ever-smarter compilers, at the cost of explosive growth in
compiler complexity. We don’t want to make the same trade-off.
To avoid ever needing a complex compiler, Mu is designed to never need any

compiler optimizations. It achieves this aim by staying as close to the machine as
possible (without compromising memory safety). In particular, we aim as far as
possible for each statement of safe Mu to expand to a single instruction of unsafe
SubX.
One consequence of aspiring to a 1:1 mapping with machine code: we don’t abstract

away registers. Since x86 machine code constrains instructions to no more than one
memory operand, it makes sense to make programmers manage registers explicitly.
We’ll still verify the register allocation, as described below.

4.1 Syntax

Figure 7 shows a small example program in the safe language Mu. Just like in C,
programs are sequences of function, type and global variable declarations. Variable
definitions put the type after the name, separated by a ‘:’. They may also specify a
register that the variable occupies, separated by a ‘/’. Variables not in a register will
be placed in memory.

Figure 7 An example program in Mu’s safe language.

Figure 7 illustrates a few constraints, mostly imposed by the x86 processor. Functions
must always get their arguments on the stack, and must always return results in
registers. The registers they return their results in are part of their signature, and
every call must conform to such constraints. Some primitives (such as ‘get’ here)
can return results in arbitrary registers. No primitive can operate on more than
one variable in memory. Remaining operands must be in registers. We have special
instructions for accessing members of records (‘get’) and arrays (‘index’). Even though
they may translate to the same opcodes under the hood, giving them separate names
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helps document intention and enforce type-correctness. Conversely, the ‘compare’
instruction translates to different opcodes depending on whether the first or the
second instruction lies in memory. (We continue to use SubX’s scheme for structured
control flow, abstracting the opcodes as ‘break’ and ‘loop’ instruction families rather
than labels.)

4.2 Type system

Mu has a strong but unambitious type system. The only goal is to avoid the memory
corruption issues that plague the level below. Type-checking happens in a pass between
parsing and code-generation, and for the most part consists of matching types between
the left and right hand side of instructions. When the instruction is a function call,
the type-checker takes the function signature into account. When the instruction is a
‘get’, the type-checker takes the record definition into account.
Individual instructions impose their own constraints on the types they require.

For example, while the underlying SubX opcodes allow any two values to be added
together, Mu enforces that the ‘add’ instruction can only operate on and yield ‘int’
values.

The ‘index’ instruction always performs bounds-checking at run time; this constitutes
an exception where a Mu statement requires more than one SubX instruction to
implement.
Types can be compound, and we express them as s-expressions, for example ‘(array

int)’. An ‘index’ instruction on a variable of type ‘(array point)’ yields an output of type
‘point’.

Mu will have sum types or tagged unions; some superficial syntactic details remain
to be finalized, such as the choice of keywords for defining and reading them. We’re
also trying to integrate Ceylon-style [17] anonymous union types like ‘int|err’.

4.3 Variable declarations

SubX creates space for local variables using ‘push’ instructions, and reclaims them
using either ‘pop’ instructions or by updating the stack registers. In the safe language
we disallow the ‘push’ and ‘pop’ instructions, as well as direct access to the ‘esp’ and
‘ebp’ registers that manage the stack. Instead, the ‘var’ keyword updates the stack
pointer based on the type of the variable being declared, and all local variables are
reclaimed at the next enclosing ’}’.

var x: int # on stack; no initializer allowed

var x/eax: int <- copy 0 # in register; must be initialized with a

# valid instruction

All variable declarations automatically initialize their underlying memory at run time
(arrays and strings are prefixed with a length) and automatically reclaim it when
exiting their block; this constitutes a second exception where a Mu statement requires
more than one SubX instruction to implement.
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4.4 Addresses

A key aspect of memory-safety is managing addresses. Addresses can be used for three
purposes: to reduce copying, to alias variables, and to manage long-lived variables on
the heap. In Mu we try to separate these intentions as far as possible using two address
types: ‘addr’ and ‘handle’. Variables on the stack are defined using raw types as we
saw above. The address of a variable on the stack can be taken using the ‘address’
primitive. Functions may also define arguments with type ‘addr’ to indicate call by
reference. Figure 8 shows how Figure 7 would be modified to accept its arguments by
reference.

Figure 8 Figure 7 modified to operate on aliases of its arguments. Calls remain unchanged.

Values of type ‘addr’ are intended to be short-lived. They cannot be saved inside
user-defined types, and they cannot be returned from a function. However they can
be copied without restriction in the scope of their creation and into any functions
called by it.
The second address type is the ‘handle’. It is the result of a heap allocation, and it’s

the only kind of address that can be saved inside a user-defined type. Handles are fat
pointers; they include an allocation id [18] that is also present in their payload, and
verified at run time on every lookup. Reclaiming an allocation clears the allocation id
on the payload. If a memory allocation were to be reclaimed while a handle to it was
outstanding, a lookup on the handle would cause the entire program to abort, because
the allocation id on the handle wouldn’t match its payload (either ‘0’ if unused, or a
different allocation id if the block is reused in a later allocation). Aborting immediately
on memory corruption prevents many security vulnerabilities and simplifies debugging
when compared to C. A lookup on a handle constitutes the third and final exception
where a Mu statement requires more than one SubX instruction to implement.
It is possible to convert a ‘handle’ into an ‘addr’. To preserve safety, Mu tracks

functions that could reclaim memory and raises an error if an ‘addr’ variable’s lifetime
intersects with anymemory reclamation. Inner loops that can’t afford the performance
overhead of a handle lookup should also avoid the overhead of reclaiming memory.

4.5 Blocks

SubX simulates blocks using ‘{’ and ‘}’ labels. Mu makes such blocks real syntactic
entities that are safe to use. Any variables declared within a block are always reclaimed
when exiting it. For example, code like this:

{

var x: int

...

}

is translated to SubX code like this:
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{

68/push 0/imm32 # allocate

...

81 0/subop/add %esp 4/imm32 # reclaim

}

Register variables also require similar stack management, this time to save any shad-
owed variables and restore them on block exit.

Figure 9 A more complex translation with variables and control flow.

While the above rewriting reclaims variables when getting to the bottom of a block,
we also need to handle early exits using the ‘break’ and ‘loop’ instructions. Mu emulates
early exits using an extra nested block for each run of variable declarations separated
by exits (Figure 9).
The Mu translator ensures that any live registers entering a block were written to

as the same variable. It also ensures that live registers entering any loop blocks (loop-
carried dependencies) were written to as the same variable when exiting the loop
block. These two checks suffice to validate the manual register allocation performed
by the programmer.
Between initializing memory, validating registers and handling early exits, the

interplay between blocks and variable declarations is the most complex sub-system in
the Mu translator.

Summary: Between this section and the last, I’ve now finished describing all of the
Mu stack at a fairly low level of detail. I hope I have demonstrated that one can get
approximately to the level of C (lower expressiveness but higher safety) with a modest
outlay of code and external dependencies, and that it is possible to explain how it all
works in a matter of a dozen pages.

5 Reifying intention

While we now have a stack that fits in a single person’s head, it’s not yet a fair com-
parison with mainstream software because all software starts out small and simple.
We wouldn’t want to pit the quality of Mu against that of early C and Unix implemen-
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tations. Might Mu too grow bloated and complex over say a decade, particularly in
the unlikely event it achieves significant adoption? Complexity often stems from the
arrival of newcomers and the gradual forgetting of the causes for a design [19]. This
section describes some pervasive mechanisms in the implementation of Mu to combat
complexity creep over time, and to educate people about rationales at all levels of the
stack.

5.1 Error messages

One source of complexity in mainstream software is the pursuit of syntax. New
notations are often marketed in a ‘dead’ form [23] like a webpage or book, where one
must judge them by how they look, without interacting with them in any way. The
need for such marketing in turn drives the design of surface syntax. I think much of
this pursuit is misguided:

1. Design effort spent on surface syntax comes at the expense of other considerations.
2. Syntax often requires relatively non-leaky abstractions, which increase implemen-

tation complexity.
3. Syntax creates greater impedance mismatch between the interface exposed to the

programmer and the work done for the programmer. Bridging this gap becomes
harder when tools must communicate with the programmer.

Mu explores a contrary approach. It’s designed from the ground up to minimize
impedance mismatch at all levels. As a result, the error messages are easy to write.
We can assume more knowledge from people, because we front-load education to
optimize for the long term rather than the initial experience. Several design choices
in Mu illustrate this dynamic:

SubX requires opcodes rather than mnemonics. While mnemonics look like English
words and are therefore ‘friendly’ at first glance, natural language is often mislead-
ing when applied to programming. The instruction ‘add’ has many sharp edges in
Assembly language that the English word ‘add’ fails to encompass. Using opcodes
requires some initial orientation but, I hypothesize, will provide fewer unpleasant
surprises over a lifetime of use.
Mu and SubX are statement-oriented and provide minimal syntax, so that transla-
tion steps are tractable to present to users. The entire toolchain is designed to be
transparent, to mention locations of temporary files, and to encourage people to
look inside them after a compiler error. Developers who benefit from these features
today will hopefully contribute to preserving them in future.
SubX’s ability to emulate machine code programs and emit traces allows error
messages to be terse and refer people to the trace of an execution. Traces and
assumptions about a more active user reduce the amount of infrastructure needed
to present stack frame information on an error.
Since people are constantly encouraged to browse large traces using the packaged
zoomable UI, the details of how Mu programs are run are more likely to be in the
programmer’s mental model, and therefore can be referred to in error messages.
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Arguably the work done so far represents the easy part of the task. Any high-level
expression-oriented language built atop Mu will need a lot more work to preserve
the sense of transparency while performing more complex transformations on user
code. Initial experience, however, is promising. Where modern compilers grow more
complex and so need to manage more state for error messages which in turn causes
greater complexity, Mu shows that transparent implementations can cause people to
understand details and so require simpler error messages.

5.2 Testable interfaces

Conventional wisdom today is that automated tests are important. Conventional
wisdom also advises us to test business logic, not I/O. What about programs that
perform lots of I/O? Most programs in my experience tend to have complex I/O
flows, whether they’re webservers going through multiple levels of proxying, web
applications that need to render on multiple browsers, or desktop software like text
editors. In all these cases the ability to test I/O must be slowly recreated over time
using heavyweight frameworks like Selenium. In spite of all our efforts, tests don’t
detect all possible failures, as evidenced by the pervasive use of manual certification,
release candidates and canarying when deploying programs.
I argue that the conventional wisdom to test business logic, not I/O is a consequence

of OS interfaces that predate the modern emphasis on tests. If our OS interfaces were
designed to be testable, testing I/O would be as lightweight as any other kind of test.
While Mu doesn’t yet implement an OS kernel, it wraps conventional OS syscalls

to research the benefits of more testable interfaces. Our key pillars are dependency
injection and fakes. For example, printing to screen shouldn’t be written as:

print("hello")

It should be written:

print(REAL_SCREEN, "hello")

Explicitly passing in an identifier for real hardware now allows the interface to support
passing in fake hardware in automated tests.
Unix’s insistence on everything being a file is a hindrance here. We don’t even have

a syscall to print to screen! SubX’s lowest-level helpers for writing to ‘stdout’ accept
either a file descriptor or a stream object. As a result, Mu’s tests pervasively write to a
stream and then check its contents to validate results.
A previous prototype went much further than this. The following table summarizes

the modalities that we have researched in the past, and the best interfaces we were
able to design.

syscall new dependency injected fake for the dependency
print() screen 2D array of characters
getchar() keyboard byte stream
exit() opaque descriptor continuation
socket calls resources map from URLs to contents
read() file system map from URLs to contents
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Much work remains here. When Mu eventually gets an OS kernel, we’ll need testable
interfaces not just for high-level abstractions like a hard disk but also for internal
details like disk buffers. They will have to permit encoding a wide variety of intentions,
such as what exactly we would like to happen when, say, a ‘sync()’ syscall is executed.
Under what circumstances will a computer lose data? Unix makes this question hard
to reason about.
Not all interfaces to the OS are syscalls. We’d like to be able to simulate a context

switch between two specific instructions, or run the component under test in a sub-
process that we can then interrupt at will to check if it’s blocked waiting on input
from a specific channel (e.g. the keyboard). Again, we have some high-level answers
here in the context of a virtual machine, but need more work to arrive at the right
interface on a real system.

5.3 White-box tests

A second bit of conventional wisdom around testing is to test only what can be robustly
tested. As a consequence, mainstream software doesn’t write automated tests for
performance. Mu’s traces help here. So far we’ve only discussed traces of machine
code instructions run in the emulator (Figure 3), but all Mu programs emit a trace, a
versatile append-only in-memory log of structured facts deduced about the domain
during the course of a program. Automated tests can now inspect the trace and check
not just the final result but also that it was deduced in the correct manner. This
approach gives us two benefits:

1. We can now write stable and robust tests denominated in the units of our choice.
For example, a ‘sort’ function may emit an event to the trace on every swap, thereby
permitting a performance test to check that doubling the size of the input doesn’t
cause the number of swaps to quadruple. Traces are useful not just for performance,
but for say testing that a triangle is visible in a graphics pipeline, or that a failover
occurred correctly when the master crashed in a distributed system.

2. We can now write fine-grained unit tests without making assumptions about ar-
chitecture. For example, Mu’s parser emits tokens to the trace. Tests run not just
the parser but all of the translator and check just the events in the trace labeled
under the namespace of the parser. Arranging the test in this manner gives us the
flexibility to radically reorganize the translator, moving to a parallel or lazy parsing
implementation. Conventional tests would need to be rewritten in such situations.
With traces they don’t. (Mu is helped here by having lightweight fake hardware
that allows integration tests to run almost as fast as unit tests.)

We aren’t just treating the component under test as a black box but inspecting its
internals. In combination with testable OS syscalls, white-box tests can check that a
function doesn’t allocate memory, or that an email is sent even if the disk is full, or
that a function doesn’t block on I/O, or that a context switch at a specific point to a
specific process doesn’t cause a data race.
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5.4 Cherishing forks

Most software today is on a trajectory of ever-increasing complexity. Features are rarely
deleted. Over time complexity invariably reaches a threshold where new features take
longer and longer to add. At this point the project becomes much more selective about
adding new features. The result of this trajectory is that early users have a huge impact
on the feature set of a program, often long after they stop using it! Compatibility,
while useful in moderation, has over time the effect of ossifying all the degrees of
freedom.
Much of this trajectory stems from people’s reluctance to modify software, a ten-

dency Mu works hard to counteract. Given a stack that is easy to understand, it’s
worth revisiting the value of compatibility. If people can modify a project for their
needs, the next step is to start deleting features they don’t use. In the process they
can reclaim vitality that has ossified under a “high feature load”.
This hypothesis remains untested so far. Mu has no forks yet. But the intent is to be

extremely encouraging of forks, and to help them take on an independent existence.
Normally features the original authors don’t like tend to languish. If forks become easy
to create, then it’s easy to spin off forks, and to direct demand for specific features
to specific forks. Managing changes between long-lived divergent forks is an open
problem, but I suspect its difficulty is over-rated.

5.5 Summary

I’m more certain of this section than any other in this paper. Even if Mu’s specific
architectural choices turn out to be wrong, the mechanisms of forks, traces, abstraction-
friendly OS interfaces and abstraction-hostile error messages seem compelling for
Illich’s agenda of promoting conviviality and managing the complexity of our software
supply chains.

6 Conclusion

Before I built a wall I’d ask to know
What I was walling in or walling
out. . .

Robert Frost

Among programmers there’s a long-standing lament about the excessive complexity
in software projects. Ivan Illich points out that this tendency towards complexity
isn’t restricted to software, but rather stems from sociopolitical causes: the need to
structure society with certain specialization and compatibility constraints. Given these
constraints, Conway’s Law [4] takes over. The complexity of our software largely
reflects the complexity in our social arrangements.
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The original sin is to try to decompose a system into an “inside” and an “outside”.
While the instinct is laudable, it invariably leads to specialization. Repeat it over and
over, and the number of such boundaries compounds, constraining us all.
What is to be done? Mu attempts a high-risk maneuver I think of as “Conway’s Law

in reverse”. We stubbornly refuse to provide the usual dichotomies of inside vs outside,
and by this means hope the benefits of this approach (if they exist) cause society to
consider it, with a very slow cascade of consequences resulting in a competing social
arrangement.
This paper has demonstrated Mu deconstructing the dichotomy between “inside”

and “outside” on 6 different levels:

1. By selecting notations at the lowest level for implementation properties (minimal
dependencies, simple dependency graphs) rather than clean interfaces.

2. By using traces to show details rather than modules to hide details.
3. By making tests white-box rather than black-box.
4. By encouraging the distribution of whole computers rather than packages.
5. By encouraging users to fork open source software rather than submit to a central-

ized governance process.
6. By optimizing for learnability rather than familiarity.

In the process, we’ve taken on some risks. Mu programs are aesthetically unappealing.
Debugging may be harder with this approach. Mu makes new kinds of errors possible:
traces that lie about what a program did, opcodes that are easy to mistype so they
don’t match their metadata, and so on. But if we truly believe that the software
development process should prioritize comprehension over ease of authorship, it’s
worth exploring what we gain by taking on these drawbacks.
While Mu’s build and runtime environment is fairly independent of mainstream

software, it still relies on a host machine for the development environment. Tools like
the emulator and trace browser require C++, as does getting error messages during
development. Over time these features will be reimplemented in Mu, along with
much else. Lots more will hopefully be jettisoned indefinitely. We are willing to avoid
expensive high-level features in our quest for convivial tools.
The presence of run-time checks may well result in a stack that is slower than the

mainstream, in spite of the performance benefits of streamlining the stack vertically
(fewer layers) and horizontally (more forks, less complexity per fork). Even if it’s slower,
it’s worth questioning what speed buys us. Unconstrained growth in performance is
a political and economic goal for those selling computation by volume. If we each
had one computer to truly call our own, truly running for our benefit, would it really
run at full throttle day in and day out? Our experience with Mu suggests that it
might be better to treat performance—and much else that we tend to obsess over—as
something to satisfice rather than optimize.
Creating an entire new stack may seem like tilting at windmills, but the mainstream

Software-Industrial Complex suffers from obvious defects even in the eyes of those
who don’t share our philosophy. Projects tend to accumulate inertia and slow down
over time. Security is a constant concern, and review is lacking in spite of source code
being increasingly open and available. Vulnerabilities when found often have a high
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blast radius. These problems seem foundational, and they are reasons for anyone to
explore starting anew [11].
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