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Chapter 1Introdution
For about two deades starting in the early '80s, proessor lok speedimproved by approximately 50% per year, while DRAM speed only improvedat about 7% per year. As a result, the speed gap between proessor and mainmemory yle time doubled approximately every 6.2 years [8, 32℄. Proessorspeeds have sine largely stopped their exponential growth, but modern sys-tems must still deal with latenies to main memory of up to 2000 yles.Cahe hierarhies have grown in importane as a way to mitigate thee�ets of this speed gap [46, 73, 87{89℄; today's miroproessors often havethree levels of ahe memories, with eah level �ltering the address stream seenby lower levels. Cahes however make assumptions of spatial and temporalmemory loality that are not always valid, and many programs still spend asubstantial fration of their time stalling for memory.The problem of inreasing memory lateny has onsumed muh researhe�ort, and yielded signi�ant new advanes. Prior work in memory-systemmay be ategorized into two lasses: lateny avoidane, and lateny tolerane.Lateny avoidane tehniques attempt to redue average memory aess time(AMAT) for a set of ommon aess patterns. Suh tehniques inlude among1



others multi-word ahe-lines to exploit spatial loality, vitim bu�ers, andskewed-assoiative ahes to mitigate onit misses [42, 80℄.Lateny tolerane tehniques try to �nd independent useful work todo while they wait for long-lateny memory aess to omplete. Examples oflateny tolerane are pipelined memories and banked strutures that an beaessed in parallel [15℄, out-of-order proessors and non-bloking ahes todisover loal parallelism in a serial representation of software [4, 18, 39℄, andmore global uses of parallelism suh as multi-threading [48℄.Prior work has also emphasized a spei� sub-ategory of lateny toler-ane tehnique. Sheduling tehniques attempt to neutralize AMAT by usingthe various levels of the memory hierarhy as staging stations for the e�etivetransfer of useful data to the proessor. They inlude instrution shedulingfor load latenies and software-pipelining in the ompiler [58, 65℄, shedulingaesses to DRAM in hardware [37℄, a variety of prefeth tehniques in softwareand hardware, and tehniques suh as read-miss lustering [69℄.In spite of these advanes, the memory system ontinues to be a majorbottlenek to performane while the variety of appliations has ontinued togrow. While the above tehniques are often e�etive, their e�et varies for dif-ferent appliations, and it is hard to estimate a priori the interation betweena spei� lass of optimizations and a spei� appliation. As appliationsand the systems they run on grow more omplex, it beomes more diÆultto determine potential soures of ineÆieny and mismath between the two.Given the requirement to handle a variety of appliation workloads, sheduling2
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struct foo bar ;
void main () {
      for (i = 0; i < 10; ++i) {
            f2 = malloc (struct foo) ;

}
       }

            .....
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struct foo bar ;

void main () {

        for (i = 0; i < 10; ++i) {

       FILE.print ("bar", bar, sizeof(bar)) ;

              PTR = f2 ;

              asm("mop") ;
              ...........
        }
}

              f2 = malloc(struct foo) ;

              NAME = "f2" ;

              SIZE = sizeof(f2) ;

       asm ("mop") ;

Figure 1.1: DTrak toolhainpromises the greatest exibility at runtime in adapting to the needs of di�erentprograms without dilating ritial paths in a memory aess.In this dissertation we perform a detailed appliation haraterizationthat deomposes program behavior by data struture and phase. We summa-rize the rih piture provided by suh data into dominant aess patterns fordi�erent phases in eah appliation. We then fous on the irregular applia-tions that are hallenging for prior work and desribe some key properties ofthese programs. These key properties then drive the next phase: the design ofa novel prefething miroarhiteture alled TwoStep. The rest of this hapteroutlines this proess in greater detail.1.1 Detailed appliation haraterization: data stru-tures and phasesUnderstanding how appliations use the memory system is importantto at least three groups: (1) system designers who an apply insights intomemory system usage to improve hardware and software memory optimiza-3



tion tehniques, (2) appliation writers who an understand how their programuses the memory system and optimize for better loality, and (3) benhmarkdevelopers who want to ensure that the diverse patterns of behavior in real-isti appliations are represented. While many tools have been developed toanalyze memory behavior [53, 60, 63, 96℄, none give insight into the behavior ofindividual data strutures within a program. Our tool | DTrak | gathersmemory system statistis on a per data struture basis, to help identify thosedata strutures that have the strongest inuene on performane and to o�erinsight into their size and aess patterns.Figure 1.1 outlines the struture of the DTrak toolhain. DTrak on-sists of a C-to-C ompiler that automatially instruments variable alloationsin programs and a detailed timing simulator that onsumes this instrumen-tation. This ombination yields a tool that generates data pro�les - detailedbreakdowns of ahe misses by the di�erent high-level data strutures in thesoure ode. In our experiments with DTrak, we measure the distributionof misses in major data strutures, the impat of these misses on total yleount and on time spent stalling in the pipeline.Given this data pro�le, we then manually ombine it with a onven-tional ode pro�le to determine the dominant aess patterns for eah datastruture. Figure 1.2 summarizes the aess patterns of three representativeappliations as the manner in whih the major loops traverse the major datastrutures. Sine most ahe misses in these programs our within these loops,we an fous on them and treat the entire appliation as simply a sequene of4



I. 179.arti = i+1 {f1[i℄} i = i+1 {bu[i℄}a) b)II. 181.mfi = i+1 {node[i℄} node = DFS(node) {node->hildnode->parentnode->siblingnode->prevSibling}a) b)III. 300.twolfi = rand() {t1 = b[[i℄->blok℄t2 = t1->tile->termt3 = n[t2->net℄}Figure 1.2: Aess patterns of major loops: the sequene of objets touhedin eah iteration. The expression outside the body shows how the indutionvariable hanges for eah loop (DFS denotes depth-�rst traversal); the bodyenumerates important loads dependent on the indution variable.
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iterations from its major loops. The major loops in all our appliations havethe following key properties:� They exhibit a wide variety of aess patterns, both between di�erentappliations and within some appliations.� While aess patterns an be very di�erent in di�erent loops, eah loopan be summarized in a symboli manner like the examples in the pre-vious setion.� Eah loop iteration performs a series of memory aesses that are oftenhained together by data and ontrol dependenes.� Even though individual loop footprints an far exeed onventional aheapaities, the footprint of eah individual loop iteration is small andoupies just a few ahelines of a normal level-1 data (DL1) ahe.� Most of the hard ahe misses our on the �rst aess to an objet in aloop iteration.All but the last of these points are onventional wisdom; our harateriza-tion helped us to quantify their e�ets, and to fous our attention on thesepartiular properties.1.2 Summary of prior approahesNumerous prefething tehniques have been proposed in the litera-ture, using both software and hardware, and initiating both single short-range6



prefethes and long-range sequenes of prefethes at a time. Purely softwareprefething, using the ompiler to strategially plae prefeth instrutions inan appliation's instrution stream, is a ommon approah [13, 59℄. However,it is often hard for the ompiler to statially plae a prefeth the right distanebefore its use. If the prefeth is too lose to its use, its lateny is not entirelyoverlapped; if the prefeth is too far, the prefeth is likely to pollute the aheand itself be evited before use.Prefething with hardware support provides greater exibility at run-time in modulating the slak between prefeth and use based on appliationneeds. Prior studies have resulted in many suh prefething tehniques, �rstissuing prefethes one at a time, either under ompiler ontrol [13, 59℄ or usingspeial hardware that is triggered on spei� events suh as ahe aesses [87℄,ahe misses [16, 41℄ and dead blok speulation [49℄.Under the pressure of growing latenies to main memory, reent workhas foussed on ways to issue systems of prefethes at a time. The searh forways to determine sequenes of addresses to prefeth has proeeded in twolargely independent diretions driven by oniting appliation requirements.The �rst onsists of using prior history in an appliation's exeution to speu-latively selet systems of prefethes, expressed either as a region of the addressspae [55, 99℄ or as an aÆne funtion [43, 85℄.The seond diretion onsists of preomputation - reating a prefeththread in either hardware or software that runs ahead of the appliation anddetermines what to prefeth [11, 66, 93, 103, 105℄. This preomputation may7



ome from running speial kernel programs, opies of the appliation undervarious speulative modes, or dynamially generated sequenes of instrutions.Both approahes have drawbaks. History-based approahes are unable to gen-erate aurate prefethes in the presene of arbitrarily omplex aess patterns.On the other hand, open problems in preomputation-based approahes arelow-overhead throttling to avoid ahe pollution when the prefeth thread runstoo far ahead, and prioritizing between independent prefethes issued by theprefeth thread.Summary of drawbaks: The state of the art in prefeth tehniques hasseveral major limitations; the major deisions of what to prefeth, when toprefeth it and where to prefeth to remain hallenges in their most generalsetting. First, deiding what to prefeth is a hallenge for irregular programsthat interleave spatial aess and pointer dereferene in omplex ways, andmodern prefeth tehniques are often better tuned for one of those aess pat-terns than others, suh as prefething arrays or hasing pointers. Appliationswhose aess patterns are too omplex for urrent approahes are also oftenthe ones with the worst baseline performane and therefore most in need ofimprovement. They are also unlikely to fade in importane; urrent trends ofgrowing appliation footprint, inreasing software omplexity and the need forgreater exibility at deployment-time have made the use of pointers inreas-ingly ommon [10, 67, 72℄.Seond, mehanisms that improve prefeth auray for one set of appli-8
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Figure 1.3: The TwoStep prefething systemations often end up ausing tighter timing onstraints for another set resultingin prefethes that are either initiated too late to be e�etive or those that enterthe ahe too early and pollute it.Finally, the greater sensitivity of the DL1 to pollution has resultedin most approahes prefething exlusively to the L2. We now outline ourapproah to address these drawbaks, driving our study with a detailed har-aterization of appliation harateristis.1.3 TwoStep: Miroarhiteture and ompiler forpreomputation-based prefethingThe ompeting advantages of history- and preomputation-based prefeth-ing are largely omplementary. Rather than hoose between the two, we9



all for a synthesis driven by appliation harateristis. Our approah isto selet between history- or preomputation-based prefething depending onwhether the appliation is respetively more likely to be onstrained by MLPor prefeth auray, using the twin metris of omputation per memory a-ess and aess-pattern irregularity. Our results show that these metris aree�etive at prediting whih appliations will bene�t from history-based andwhih from preomputation-based prefething.We begin our design by foussing on the hallenges posed by irreg-ular programs and use the above analysis to guide the design of a novelpreomputation-based prefething system - TwoStep. Our design (Figure 1.3)onsists of a statially-generated prefeth program that exeutes on a pro-grammable prefeth ontroller. Our prefeth programs are powerful enough toenapsulate strided, pointer and index-array aess. This allows us to overthe broad variety of aess patterns. In order to minimize lateny betweendependent prefethes, we plae the prefeth ontroller in the L2. In order toavoid pollution in the DL1 we push eah prefeth from L2 to a FIFO betweenL2 and DL1. Prefeth ulminates in the movement of a �xed number of ahe-lines into the level-1 data (DL1) ahe. Sine the fous of TwoStep prefethingis on the �rst aess to eah objet in a loop, this movement is orhestrated byan ISA enhanement we all the Pull instrution, inserted at the start of eahloop iteration in order to bring into the DL1 the ahe-lines that onstitutethe working set of that iteration. Sine loop iteration footprint is low, pollu-tion in the DL1 due to oasionally inaurate prefethes is bounded. Finally,10



the presene of the FIFO and Pull instrutions makes it easy to throttle theprefeth thread | the prefeth program stalls when the FIFO is full. Thislightweight mehanism for throttling avoids polluting the L2.We implement a ompiler for TwoStep to automate the generation ofprefeth kernels from appliation soure ode. Our ompiler improves on thestate of the art [47℄ by requiring less pro�le information (iteration ounts forloops only) and by performing a more aggressive searh of the state spae ofloop luster ombinations to selet the most favorable loops. The ombinationof ompiler support and these miroarhitetural mehanisms provides e�e-tive prefething for irregular appliations, inluding several that have beenhallenging to prior work.However, omparisons with Guided Region Prefething [99℄ show thatpreomputation fails to ahieve as muh bene�t on more regular appliationswith spatial loality. A detailed analysis reveals that the trends shown bythe two ompeting tehniques are representative of the more general lassesthey belong to: bakward-looking history-based prefething vs forward-lookingpreomputation-based prefething. History-based prefething onsists of trak-ing the history of the address stream for an appliation and making predi-tions based on the assumption that future behavior will be similar to the past.Preomputation-based prefething, on the other hand, does not make this as-sumption and instead expliitly preomputes the appliation's future needs.We �nd that appliation aÆnity for one lass or the other is deidedby two major properties: aess pattern regularity and omputation per mem-11



ory aess. Appliations with irregular aess patterns will learly have highaÆnities for history-based prefething. This is not surprising; regular aesspatterns are easier to predit based on knowledge of the past address stream.Conversely, we expet irregular appliations to prefer preomputation-basedprefething. More surprising, however, appliations with irregular aess pat-terns require more omputation per memory aess in order to bene�t frompreomputation-based prefething. The greater prevalene of dependenesand sequentialization auses poor utilization of prefeth bandwidth and makesthem more sensitive to the ritial path in a loop.When the memory footprint of a loop exhibits signi�ant loality, history-based prefething an issue prefethes in parallel and tolerate muh `tighter'loops with less omputation per memory aess. However, suh approahesfail to bene�t appliations with low spatial loality, and aurate prefethingrequires a preomputation thread to run ahead of the main program gener-ating prefethes. This approah is however onstrained in its memory-levelparallelism, and as a result annot be applied to loops with low levels of om-putation per memory aess. This analysis of the state spae provides thebasi intuition behind the omplementary nature of these two ategories ofprefething. Di�erent loops in an appliation require either one or the other.As a result, ombining region prefething with preomputation is a feasibleapproah, and we show that this ombination suessfully ahieves the best ofboth worlds.
12



1.4 Dissertation organization and ontributionsIn this dissertation we fous on the shortomings of past work in prefeth-ing irregular memory-intensive appliations and try to remedy these short-omings without ompromising hard-won improvements for other appliations.Our solution ombines features from software and hardware as well as loal andglobal approahes to prefething. It onsists of a ompiler-generated prefethprogram that runs on a simple in-order programmable prefeth ontroller inthe level-2 ahe (L2) [99℄; a FIFO between the L2 and the level-1 data (DL1)ahe that reeives every prefeth generated by the prefeth ontroller [97℄;and ISA enhanements that provide hints on eah loop iteration in the mainprogram, inluding its bounds, expeted footprint, and aess patterns. TheISA enhanements enode general properties about a program that ould beused by other tehniques as well, and we show how to use them to orhes-trate data transfer from FIFO to DL1. In partiular, this thesis makes threeontributions:� A detailed haraterization of irregular appliations to �rst establish thefeasibility of overlapping aess lateny in them, and then glean someinsight into their aess patterns.� The design and evaluation of a prefeth tehnique alled TwoStep thatombines the bene�ts of software and hardware as well as short- andlong-range prefething.
13



� The insight that preomputation- and history-based prefething are om-plementary approahes, with strengths and weaknesses in opposition toeah other. Appliations with irregular aess patterns an bene�t fromthe the greater exibility of preomputation; appliations with low om-putation per memory aess require the better bandwidth eÆieny ofhistory-based approahes.The rest of this thesis is strutured as follows. In Chapter 2 we survey the priorliterature in several areas related to this dissertation. Chapter 3 desribes ourframework for deomposing memory behavior by data struture and summa-rizes the results of this study. Chapter 4 similarly desribes our framework forstudying phase behavior, with a novel adaptive algorithm to identify the bestgranularity at whih to view the phase behavior of an appliation. Chapter 5desribes our TwoStep prefeth miroarhiteture and presents the results ofan initial study with hand-rafted kernels. Chapter 6 desribes the TwoStepompiler and haraterizes the state spae seen by it for our appliations.Chapter 7 puts miroarhiteture and ompiler together for a omprehensiveevaluation, quantifying the strengths and weaknesses of TwoStep ompared toother tehniques that rely on spatial loality, and showing that the two kindsof prefething are amenable to reombination. Finally, Chapter 8 summarizesour insights from this work and identi�es areas for future study.
14



Chapter 2Bakground and related work
In this setion, we summarize the related work that we build upon inthis thesis. In tune with the struture of the thesis, we break down our analysisinto three ategories - memory visualization and haraterization tools relevantto DTrak, the body of prefething studies relevant to TwoStep, and �nallythe prior work in whole-program analysis, pointer analysis and sliing that theTwoStep ompiler is based on.2.1 Visualizing appliation memory behaviorSimulation is a ommon method of produing aggregate memory statis-tis [1, 9, 33, 89℄. More sophistiated ahe memory behavior analysis toolshave been developed [53, 60, 61, 63, 64, 96℄, and this setion ompares DTrakto this prior work. Our work di�ers from these tools in that we onsider pointerdata strutures in addition to arrays, and show that aggregate statistis ob-sure possible optimization opportunities revealed by phase behavior. Thisinreased detail omes at a ost of inreased simulation time.Most tools have foused on aggregate data struture and proedure-level information for arrays [53, 60, 61℄. Lebek et al. [53℄ and Martonosi et15



al. [60℄ present data struture and proedure level aggregate miss information,and lassify misses as ompulsory, apaity, and onit. Both papers alsopresent a number of software optimizations for improving ahe performane.While these tools point users to the ode and arrays that ause problems, theyexamine the behavior of an array within the ontext of a single proedure,resulting in two weaknesses. First, beause they do not perform ross datastruture analysis, it is not diretly apparent from their aggregate data statis-tis whih data strutures interfere with themselves or with others. Seond,sine they do not perform ross-proedure analysis, optimizations hosen toimprove performane of one array/proedure ombination may diminish per-formane in another proedure. Finally, both tools handle only regular array-based data strutures rather than pointer-based data strutures. MKinleyand Temam analyze the omplementary dimension of inter-nest and intra-nestloop loality [63, 64℄, but again onsider only arrays and aggregate informationbetween loop nests.2.2 Analyzing time-varying behaviorSeveral tools have studied time-varying behavior. The Cahe Visual-ization Tool [96℄ demonstrates the time-varying behavior of arrays as theymarh through the ahe. The graphial omponent of this tool olors ahe-lines aording to their loality and misses by data strutures, so the useran see whih ahe-lines ause onit misses. This level of detail supportsanalyzing a single loop nest at a time, whereas we analyze data struture16



phase behavior aross muh longer periods. Chilimbi et al. [20, 78℄ analyzeompressed program traes, deompose them into hot data streams, and usethese hot data streams to drive layout and prefething optimizations. This ap-proah of searhing for aess patterns aross the di�erent data strutures in aprogram is omplementary to ours, whih attempts to deompose appliationaess patterns by data struture. We believe our approah is more e�etiveat providing intuitions about appliation behavior that are useful to humansin di�erent roles.More reently, several studies have used some form of ode signatureto detet phase boundaries. Basi Blok Vetors (BBVs) are urrently themost aurate method to generate ode signatures, and several studies exploretheir uses in lustering phases and deteting phase transitions in an o�ine [83,84℄ and online [86℄ setting. One alternative to BBVs is the use of programounter or Extended Instrution Pointer Vetors (EIPVs) [6℄, whose meritshave been debated by Lau et al. [51℄. Another alternative onsists of morehigh-level metris based on ode struture, suh as register use vetors or loopvetors [52℄. All these studies, however, selet an arbitrary sampling periodand use it for all the appliations they evaluate. In this study, we provide amore rigorous method to separately determine the orret sampling period foreah appliation.Perhaps the most similar work to ours is the online phase detetor ofNagpurkar et al. [68℄. Their system maintains a urrent window of objetreferenes within a JVM and assesses the similarity of the reent referenes17



in it to those in an older trailing window. Like our study they evaluate thee�et of window size (sampling interval) on phase detetion. While our studylooks for phases in �ne-grained behavioral statistis of an appliation, theystudy phase behavior in the funtional list of objet referenes touhed by anappliation. The two approahes are omplementary.2.3 PrefethingPrefething has been an important tool in ombating growing memorylatenies in both the ompiler and miroarhiteture, and as a result thereis a large body of researh in this area. We break it down into several ate-gories below, foussing on important studies in eah and elaborating on theirrelationship with our sheme.Spatial prefething and stream bu�ers: The earliest systems performedprefething for array-based numerial odes. Software-based solutions detetedarray referenes and loop indution variables to prefeth a �xed number of iter-ations in advane for omplex loop nests [12, 59℄. These solutions were gearedtowards array-based appliations with a very di�erent patterns of behaviorfrom our fous in this work, and we do not onsider them further. The earliesthardware prefeth systems systems simply brought in the next ahe-line on amiss [87℄. Developments and enhanements have proeeded along several di-retions. First, a variety of tehniques have been studied for region prefething,ulminating in the work of Lin et al. [55℄. Seond, spatial hardware prefeth-18



ers used stream bu�ers to avoid ahe pollution in the presene of inaurateprefethes [42, 45, 71℄; we fous on two exemplars of the state of the art. Sher-wood and Calder [85℄ ouple stride predition with stream bu�ers, while Hurand Lin [38℄ adaptively vary stream length at an appliation granularity. Ourmehanism draws inspiration from stream bu�ers as a mehanism to avoidahe pollution. However, stream bu�ers are inadequate to our needs for tworeasons. First, they lengthen the ritial path of a normal ahe aess tosearh a ahe and assoiated stream bu�ers, either in series or parallel. Se-ondly, the stream-bu�er approah to handling inauraies in predition doesnot �t our model. Stream bu�ers an be seen as a onstantly evolving set ofhypotheses on the stream of addresses that a program needs. When one fails,the stream bu�er is simply ushed to make way for another hypothesis. Inthe ontext of irregular appliations, however, the ompiler-supplied hypoth-esis is a valuable resoure and our mehanism is able to tolerate momentaryinauraies in the FIFO without needing to frequently ush it. While Hurand Lin do not spend time onstruting elaborate hypotheses, their approahfousses exlusively on spatial ahe misses, �nding short streams even in ir-regular programs. Our approah is omplementary, foussing instead on themore diÆult non-spatial ahe misses.Software prefething by ompiler-inserted instrutions: Based on ear-lier work on array-based programs, Lipasti et al. performed an early studyshowing that bene�ts ould be obtained by prefething pointers passed as pa-19



rameters to funtion alls [56℄. Luk and Mowry identi�ed the main problemto overome in array-based prefething: the presene of pointers introdues aserialization between prefethes, so that prior prefethes must return beforemore progress an be made [59℄. They performed a thorough analysis of the useof jump pointers to overome this serialization. Cahoon and MKinley builton the work of Luk and Mowry by performing interproedural dataow anal-ysis in an objet-oriented environment with virtual-method alls [12℄. Thesestudies handled regular pointer-based odes suh as linked-list and binary treetraversal with suess. However they are unable to adapt the slak given toprefethes at runtime.Hardware prefething by deteting patterns in the address stream:Another line of prefething studies add hardware enhanements to supportthe prefething deision. A number of studies have found suessively moresophistiated patterns to prefeth by observing the patterns of an applia-tion's address stream. We note the progression of ideas from early studieson deteting variable-stride patterns suh as by Chen and Baer [19℄, throughstudies on Markov prefethers that use ahe misses to trigger further ahe a-esses [5, 41, 77℄, �nally ulminating in the work of Iaobovii et al. [40℄, whihpresents omplex stride-detetion hardware to trak and predit a variety ofaÆne aess patterns. Dead-blok orrelating prefethers are another devel-opment on this idea, triggering prefethes not on spei� ahe misses, but onthe earlier speulative evition of ahe-lines [49℄. All these studies assume20



that there are patterns to be found in the address trae, and in pratie are atthe mery of pathologies of memory alloators. They also need ahe missesto perform prefethes, and are therefore self-limiting in the improvement theyan bring.Hardware-based pointer prefething: Several studies have attempted tomodel pointers themselves rather than raw address streams. An early expo-nent was the study of jump pointers by Roth and Sohi [76℄, showing them tobe feasible for prefething in both software using hand-oded kernels and inhardware using a speialized unit to onstrut hains of jump pointers andstore them in the intersties of heap alloations. In spite of being amenableto implementation in hardware, jump pointer-based prefething su�ers fromthe lassi problem of software prefething - an inability to adaptively timeprefethes based on dynami hanges to a program.Reent work on ontent-direted prefething emphasizes this aspet [3,23℄. These studies ontain a prefeth mehanism onsisting of a simple hard-ware unit that sans inoming ahe-lines for pointers and initiates prefethesalong them. They also inlude a reinforement mehanism that adaptivelyprunes pointer paths that a program does not use. This approah has twodrawbaks. First, it addresses pointer and indiret prefethes, but is unableto avoid spatial misses for objets larger than a ahe-line. TwoStep is ableto handle arbitrary interleavings of regular and irregular types of aess. Se-ond, like address-stream-based approahes desribed above, it relies on ahe21



misses to trigger prefethes albeit in a more eÆient manner. TwoStep allowsthe prefeth thread the opportunity to run ahead regardless of ahe missesor other pipeline state. As an extreme example, a low-ILP appliation with ahigh omputate-store ratio but irregular aess patterns would spend a signif-iant portion of its time stalling for memory in spite of suh a pointer prefethsystem. TwoStep would however be able to stay ahead of the main programand avoid most DL1 misses.Programmable prefeth engines: While the above pointer prefethingstudies ould get multiple iterations ahead of the main program, they werefoussed on pointers alone and unable to handle more sophistiated aesspatterns ombining spatial and pointer aess. A ouple of reent studies haveaddressed this. Guided Region Prefething by Wang et al. provides hints inload instrutions that an permit the L2-based prefeth engine to run aheadof the program [99℄. However, this work avoids pollution by a hard boundon the number of iterations the prefether an run ahead. The Push modelof Yang et al. adds engines at eah level in the ahe hierarhy that eahexeute speialized kernels to push data to the level above [102℄. Comparedto our work, that study has several di�erenes. First, it is designed for purelypointer-based traversals and is unable to handle ombinations of spatial andpointer-based aess. Seond, it involves muh more hardware omplexityby adding engines at eah level of the memory hierarhy, engines that aresupersalar and implement omplex heuristis for prioritizing and throttling22



aesses. The use of a FIFO serves to substantially simplify our design relativeto theirs.A third study with some similarity to our own is the programmableprefeth engine of VanderWiel and Lilja [97℄. This study uses a prefeth enginesimilar to ours that prefethes to both DL1 and L2. However, it avoids pollu-tion by using tags on ahe-lines (rather than on instrutions as in TwoStep)to maintain a produer-onsumer relationship between proessor and prefethengine. In spite of being programmable, this engine was designed for largelyarray-based odes, and used a simple intra-proedural analysis to generateprefeth programs. TwoStep extends this approah to support irregular appli-ations.Novel proessor arhitetures with prefething e�ets: The primaryarhitetural idea inspiring TwoStep was the deoupled aess/exeute arhi-teture of Smith [90℄. We believe it is the work losest in spirit to ours, usingsoftware-ontrolled queues to manage slip between exeution and memory-aess \streams". Designed in a very di�erent ontext, the motivation ofthis design was to sidestep the Flynn bottlenek (approximating later super-salar designs) and to overlap multiple instrutions with simple issue logi(approximating out-of-order exeution). It is useful to enumerate the di�er-enes between deoupled arhiteture and TwoStep. Compared to this earlystudy, we maintain an asymmetry between the two streams, relegating theaess stream to a purely performane-enhaning funtion and reduing the23



frequeny of synhronization \handshakes" between the two streams.Several reent studies have made dramati hanges in overall proes-sor miroarhiteture, resulting in prefething e�ets among other bene�ts.The RAW arhiteture reports substantial speedups for irregular appliationsusing a more expliit orhestration of data movement and with loss of om-patibility with existing programming models [94℄. Over ommon appliations- mf and twolf - we show omparable improvements in TwoStep but with amore onventional ISA and software stak. Datasalar and Slipstream pro-essors simultaneously run a program on multiple proessors and ause it tospeed up on eah of them [11, 93℄. Runahead exeution is more parsimoniousand utilizes proessor resoures to run in \speulative" mode when it wouldotherwise be stalled [66℄. While runahead exeution has bene�ts beyond justprefething, we note that like some of the hardware prefeth shemes aboveit only performs prefethes during ahe misses, thereby being less eÆient inoverlapping lateny. It is also unlikely to be e�etive in prefething serializedpointers sine a stall in one pointer would invalidate all omputations basedon it.Summary: As the above survey shows, TwoStep bene�ts from the lessonsof a large number of prior studies. Many of these studies share some pointsof similarity but make design deisions that ause them to be ine�etive onirregular programs. The novel arhitetures surveyed above yield some ofthe bene�ts of TwoStep but at greater ost or with a hange in programming24



model. A ommon thread among many prior studies is to use ahe miss eventsto trigger prefethes. Like the designers of dead-blok orrelation prefething,we �nd this approah to be self-limiting [49℄.2.4 Sliing and whole-program analysisInterproedural or whole-program analysis has been the topi of muhresearh attempting to improve its eÆieny in a variety of ontexts: pro-gramming languages with and without pointers [34, 35℄, automati paralleliza-tion [79℄, and a variety of spei� analyses suh as onstant propagation [29℄,side-e�et analysis [21℄ and esape analysis [7, 26℄. Whole-program analysisand pointer analysis often have a symbioti relationship in the ontext of lan-guages with pointers like C [17℄; aggressive pointer analysis must neessarilybe a whole-program analysis, while other appliations of whole-program analy-sis often require points-to information. Again, muh e�ort has been expendedon the development of eÆient algorithms for whole-program pointer analy-sis [24, 27℄.There has been relatively less work in sliing, with appliations largelyin the �eld of program-understanding [36, 50, 100℄. Our appliation of sliingis rather di�erent from this onventional use; while most sliing studies fouson �nding minimal slies while retaining full overage, our fous is on �ndingsparse regions in a slie that maximize the amount of omputation not in theslie. In partiular, full overage for pathologial ases is not a onern sinewe use slies for performane, not orretness. Also, while most sliing studies25



use a stati representation of program struture, simply returning the set ofstati program statements that belong in a slie, our view is more orderedand ontext-sensitive: the ompiler must return a ontext-sensitive sequeneof statement instanes.2.5 Compiler support for preomputationCompilers for preomputation are based on program sliing and typ-ially operate either by post-ompilation binary translation [54, 76, 77℄ or atruntime in a dynami ompiler [104℄. Computing slies in hardware restritsthe sope of individual slies, while binary translation detets only simplepointer-hasing patterns. The state of the art in thorough ompiler-based pre-omputation is the work of Kim and Yeung [47℄. Kim and Yeung's ompilerframework uses 2 kinds of pro�le information | loop iteration ount pro�lesand ahe miss pro�les | to selet ompute preomputation slies for exe-ution in spare hardware ontexts of a simultaneous multithreading (SMT)proessor. We perform a more detailed omparison of this ompiler with oursin Chapter 6.

26



Chapter 3Data struture deomposition using DTrak
This hapter desribes DTrak and our methodology for analyzing ap-pliations, and performs a detailed analysis of the data strutures of twelveappliations. DTrak separates by data struture the stream of addresses anappliation requests from memory. Our exploration reveals a wide variety ofappliation behaviors and shows that opportunities for overlapping latenyexist if hardware an adapt to appliation requirements.3.1 DTrak: A tool for studying irregular appliationsDTrak onsists of a soure-transformation tool to automatially in-strument memory alloation points in programs and a detailed timing simu-
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if (inst == mop) {
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struct foo bar ;
void main () {
      for (i = 0; i < 10; ++i) {
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void main () {

        for (i = 0; i < 10; ++i) {

       FILE.print ("bar", bar, sizeof(bar)) ;

              PTR = f2 ;

              asm("mop") ;
              ...........
        }
}

              f2 = malloc(struct foo) ;

              NAME = "f2" ;

              SIZE = sizeof(f2) ;

       asm ("mop") ;

Figure 3.1: DTrak toolhain27



lator that onsumes this instrumentation. The soure instrumentation mapsaddresses to data strutures in order to ommuniate the address range or-responding to eah variable to the simulator. Figure 3.1 shows a shemati ofour tool.The instrumentation tool is an extension to the C-Breeze C-to-C om-piler [30℄, while the simulator is a detailed and validated timing model of theAlpha 21264 pipeline [25℄. For eah variable in the program, the ompiler-generated instrumentation stores the variable's name and address at a desig-nated loation in memory and interrupts the simulator by means of a speialopode (\mop" in Figure 3.1). On exeuting this instrution at runtime, thesimulator imports the information from this designated loation in simulatedmemory. Sine the simulator knows the extent of eah variable in the appli-ation at any time, it maps the virtual address of eah memory aess to aspei� variable, and maintains statistis on the progress of the memory aessby the data struture it belongs to. Classifying and assigning eah load andstore to a spei� variable slows the simulator down by 60% on average and100% in the worst ase.3.2 Design deisionsThe hallenge here is to keep the overhead due to the instrumentationlow and to minimize the perturbane to the appliation. There are two levelsof overhead to onsider. The �rst is overhead in the simulator; lassifyingeah load and store to a spei� variable and inrementing the appropriate28



ounter slows the simulator down by 60% on average and 100% in the worstase. The seond and more serious soure of overhead is instrumentationin the appliation itself. In addition to inreasing the simulator's burden,appliation-level instrumentation ould perturb the program under study andso ompromise our results. Instrumentation design is therefore guided mainlyby minimizing appliation perturbane:� Stak variables are not instrumented beause the high frequeny of sopehanges would raise the instrumentation overhead too muh. Instead, wetreat the stak as a single data struture and oalese all aesses to itby a simple range test. Our results will show that misses to the stakare generally negligible.� Global variables have a onstant range over the lifetime of an applia-tion. We ommuniate the ranges of these variables by writing themto disk and signalling the simulator as shown by instrumentation \1"in Figure 3.1. Sine these �le operations are a �xed-time initializationost, they provide the most eÆient amortized mode of ommuniationfor global variables.� Traking dynami alloations on the heap is diÆult beause the sameraw address ould be alloated to di�erent data strutures at di�erenttimes in a program's exeution. DTrak instruments heap alloationsand dealloations (\2" in Figure 3.1) and traks them in the simulator,using them to dynamially hange the data struture orresponding to29



eah address. We distinguish data strutures on the heap by all-site.As a result we are unable to distinguish between multiple alloations ata single all-site. This design is not a onern in the SPEC-2000 benh-marks we study, but might be a limitation in studying more �ne-grainedobjet-oriented appliations, where a single alloation site produes lotsof objets in multiple data strutures.Taken together, these design deisions are suessful at limiting instrumen-tation overhead to 10 instrutions per heap alloation and 4 instrutions perdealloation. This results in total overhead of less than 0.6% of total in-strution ount aross all the benhmarks we study exept gzip, where theinstrumentation is 3.7% of total instrution ount beause of frequent heapalloations in inner loops.Alternatives: We onsidered and disarded several alternatives to this method-ology for lassifying memory aesses. First, we onsidered hardware ountersrather than simulation to redue the turn-around time on our results. How-ever, hardware ounters do not have the �delity and exibility to trak ahemisses to many spei� �ne-grained memory regions. Seond, we onsideredusing the debugging symbol-table information in appliation binaries, but weould not �nd a way to handle appliations with ustom memory alloators,suh as twolf. Our methodology makes it easy to inform the C-Breeze passabout the names and prototypes of appliation-spei� ustom alloation rou-tines, along with information about how the size of the alloation is obtained30



Feature Size/ValueData ahesDL1 ahe 64 KB, bloksize 64 bytes, 2-way,3 ylesL2 ahe 512 KB, bloksize 64 bytes,diret-mapped, 12 ylesTLBs 128 entriesMain memoryPeak bandwidth 1.6Gbytes/sRambus geometry 64 banks * 512 rows * 2KB/rowAess lateny (yles) 32 PRER + 24 ACT + 48 RD/WR+ queuingOut-of-order ProessorPipeline width 4Int ALUs, multipliers 4,4FP ALUs, multipliers 1,1Branh preditor Tournament, 1 KB x 1 KB loal,4 KB global, 4 KB hoieTable 3.1: Details of the simulated Alpha 21264-like proessor and memoryhierarhyfrom the arguments to the alloation routine. We began by performing justahe simulation, but migrated to a full-sale timing simulator in order tobe able to estimate IPC improvements due to optimizations for spei� datastrutures. Finally, we used a detailed and validated out-of-order proessorsimulator beause Pai et al. showed that an out-of-order proessor presents tothe memory hierarhy a very di�erent sequene of memory aesses than anin-order proessor [70℄.
31



Benhmark IPC DL1 L2Miss-rate Miss-rate164.gzip 1.39 2.3 3.9175.vpr 0.67 3.0 35.3176.g 1.15 3.2 10.4177.mesa 1.06 0.9 23.4179.art 0.23 14.8 74.9181.mf 0.14 24.1 60.5183.equake 0.58 14.1 29.4186.rafty 1.21 1.3 4.3188.ammp 0.57 10.0 45.0197.parser 0.97 3.6 21.5256.bzip2 1.16 2.1 32.6300.twolf 0.51 9.5 26.9sphinx 0.58 15.8 41.9Table 3.2: The benhmarks we use and their aggregate memory hierarhybehavior3.3 Methodology: Benhmarks, inputs and simulationperiodsWe now desribe our methodology for the experiments in this disserta-tion, inluding simulated mahine on�gurations, benhmarks and simulationinterval seletion. We use a version of the sim-alpha [25℄ timing simulatormodi�ed to onsume the DTrak instrumentation and maintain ahe and TLBstatistis by data struture. Figure 3.1 shows the baseline on�guration wesimulate, inluding a Rambus memory model. Table 3.2 lists some aggregateproperties of the benhmarks we study, inluding average instrutions per y-le (IPC) and miss-rates at the level-1 data (DL1) and level-2 (L2) ahes. Ourbenhmarks range from regular ones suh as 179.art to highly irregular ones32



suh as 300.twolf, from ompute-bound (164.gzip) to memory-bound (181.mf).We are unable to study the remaining 3 C benhmarks in the SPEC2000 suitedue to methodologial diÆulties; 253.perlbmk no longer builds on our Alphaplatform with the latest version of lib, and 254.gap and 255.vortex run inor-retly on our native Alpha platform beause of unaligned addresses generatedby their ustom memory-managers. While these unaligned addresses ouldbe �xed by modifying the benhmark soures, we estimate that adding theneessary padding ould signi�antly perturb benhmark behavior. All oursimulations use the designated ref input set for the orresponding benhmark.Simulation intervals: We used two sets of simulation intervals for our sim-ulations. First, for the study of global phase behavior in the next hapter wesimulated eah of our appliations to ompletion. To keep experiment dura-tions reasonable we partitioned the total run-time for eah appliation intohunks of 1 billion instrutions, and performed a set of simulations in parallelon a luster of Linux workstations managed by Condor [57℄. Eah simula-tion performs funtional simulation for a staggered duration, then performsdetailed timing simulation for 1 billion instrutions. We then aggregated theresults of all these simulations o�ine to generate phase data for the entireappliation.In priniple, our parallel approah an introdue errors due to the oldahes that appear every billion instrutions. All but one or two billion-instrution samples in eah of our benhmarks enounter at least 6.7 million33



misses in the DL1 and 0.4 million misses in the L2. Only 164.gzip and 177.mesaoften have less than 2.8 million L2 misses per billion-instrution sample. Sinethe error due to extra ompulsory misses is a maximum of 512 misses in theDL1 and 8192 misses in the L2 in every billion instrutions, the fration ofextra ompulsory misses we introdue is no more than 0.05% in the DL1 and1.8% (0.2% exluding mesa and gzip) in the L2.The results of these experiments, when orrelated with high-level loops,yielded the major outermost loops that onstitute more than 90% of the ex-eution of eah of our appliations. For all our experiments exept for phasebehavior we then seleted one iteration of this outermost loop, demaratingthe start and end of this iteration by a speial `marker' opode using the teh-niques outlined above, performing fast funtional simulation until we reahthis opode, and detailed timing simulation thereafter until reahing the endmarker. These simulation periods have been veri�ed to be representative ofeah appliation's runtime and aggregate ahe miss behavior.The exeptions to this methodology are the appliations 176.g, 186.rafty,197.parser, and sphinx, for whih we were unable to generate global phase datadue to infrastrutural issues. For these appliations we determined the endof initialization by inspeting their soure ode and simulated 500 million in-strutions past this point.
34
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Figure 3.2: Deomposition of DL1 misses and aesses by data struture. L2misses show similar trends to DL1 misses.
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3.4 Results: Data pro�les and distributionsHaving desribed DTrak and our experimental methodology, we nowpresent a detailed haraterization of the above SPEC benhmarks using DTrak.We begin by studying basi data pro�les generated by DTrak, and then ex-plore two ways that this new apability to visualize the behavior of di�erentdata strutures an be used to help answer sophistiated arhitetural ques-tions. DTrak generates data pro�les. Figure 3.2 breaks down the aggregatememory behavior of our appliations { aesses and miss-rates at the DL1 andL2 { by the three data strutures that ause the most DL1 misses (DS1, DS2,DS3), the stak, and everything else. Figure 3.2.a shows that the breakdownof aesses to the DL1 (and therefore the rest of the memory hierarhy) variesgreatly aross our appliations. While 179.art and 181.mf have skewed dis-tributions, with 80% of all aesses oming from 2 data strutures, 300.twolf,176.g and 186.rafty have extremely balaned distributions; no data stru-ture ontributes more than 2% of aesses, and it takes 60{100 distint datastrutures to aount for 90% of ahe misses. Other appliations lie betweenthese extremes.While aesses are often spread out, Figure 3.2.b shows that missestend to luster. The top 5 data strutures usually ontribute more than 90%of all DL1 misses. The exeptions are 176.g, 186.rafty, and 197.parser witha long tail of minor data strutures that respetively end up aounting for84%, 67% and 78% of all ahe misses. Among the other appliations, the36



Name Type Aess Footprint Objet164.gzipwindow Array Regular 64KB 2 bytesprev Array Regular 64KB 2 bytesinbuf Array Regular 184320KB 1 byte175.vprrr node Array Irregular 10638KB 40 bytesrr heap Array Irregular 6717KB 24 bytesrr node route inf Array Irregular 2653KB 16 bytes176.greg last sets Array Irregular 0.5KB 8 bytesreg last uses Array Irregular 0.5KB 8 bytesqty onst insn Array Irregular 4KB 8 bytes177.mesaImage Buffer Array Regular 2560KB 2 bytesDepth Buffer Array Regular 5120KB 4 bytesVertex Buffer Array Regular 920KB 920KBTable 3.3: Details for some of the major data strutures in Figure 3.2.major data strutures end up partitioning ahe misses among themselves ina variety of ways; the top data struture an ontribute anywhere between 20and 80% of total ahe misses.Comparing Figures 3.2.a and 3.2.b, we see that ahe misses and a-esses are poorly orrelated. A few appliations suh as 179.art and 181.mfreveal a simple underlying organization with only a few data strutures, andmisses traking the distribution of aesses. However, the majority of appli-ations show a well-understood pattern where a data struture reeives moreaesses than another, yet aounts for fewer misses. As expeted, the stakaounts for a signi�ant fration of aesses without ever presenting a signif-37



Name Type Aess Footprint Objet179.artf1 layer Array Regular 625KB 64 bytesbus Array Regular 859KB 8 bytestds Array Regular 859KB 8 bytes181.mfnodes Array Regular & irregular 7071KB 120 bytesars Array Irregular 188416KB 64 bytesdummy ars Array Irregular 3771KB 64 bytes163.equakeK 3D Array Regular 22399KB 8 bytesdisp 3D Array Regular 2828KB 8 bytesM 3D Array Regular 943KB 8 bytes186.raftyrook attaks Array Irregular 127KB 8 byteslast ones Array Irregular 64KB 1 bytefirst ones Array Irregular 64KB 1 byteTable 3.4: Desriptions of the major data strutures in Figure 3.2 (ont'd).iant problem to the DL1. The sole exeption is 186.rafty where the stakolletively ontributes more misses than any single global data struture. Aswe have seen, however, 186.rafty has a very balaned distribution, and thestak still aounts for only 11% of DL1 misses.3.5 Data struture detailsSo far we have looked at di�erenes in miss distribution aross the majordata strutures in the di�erent SPEC benhmarks while hiding details aboutthe individual data strutures behind the anonymous names DS1, DS2 and38



Name Type Aess Footprint Objet188.ammpatoms Pointer Regular & irregular 41322KB 2208 bytesnodelist Array Regular 76KB 232 bytesatomlist Array Regular 4372KB 232 bytes197.parserConnetor Various Irregular variable 24 bytesDisjunt Various Irregular variable 40 bytestable Various Irregular variable 40 bytes256.bzip2blok Various Irregular 900KB 1 bytequadrant Various Irregular 1800KB 2 byteszptr Various Irregular 3600KB 4 bytes300.twolfnet array[℄!netptr Pointer Irregular 253KB 48 bytestmp rows Array Irregular 34KB 1 byterows Array Irregular 34KB 1 bytesphinxModel Array Irregular 3343KB 168 byteshmms Array Irregular 3531KB 76 bytesTable 3.5: Desriptions of the major data strutures in Figure 3.2 (ont'd).DS3. Tables 3.3{3.5 summarize the high-level details of these data strutures.For eah benhmark, we show the name of these data strutures as used inthe soure ode, along with a brief summary of the type of the data struture(array or reursive), whether it is predominantly aessed in a regular fashionwith spatial loality or in an irregular fashion with low spatial loality. Finally,we provide the size of eah objet in these data strutures and their total sizesin the appliation.The major data strutures are predominantly array-based in the appli-39



ations we study. However, these data strutures are often used to emulateomplex graphs using either real pointers (181.mf:nodes, 175.vpr:rr node)or integers that index into other arrays (256.bzip2:quadrant, 300.twolf:rows).The wide variety of uses indiate that data strutures are often delared tobe arrays solely to simplify memory management. Most of the major datastrutures are dynamially alloated on the heap. The major exeptions are186.rafty that auses a signi�ant fration of misses to the global segment,and 176.g whih alloates most of its variables on the stak using alloa.We now examine the wide variety of patterns by whih these data struturesare aessed.3.6 Data struture aess patternsThis detailed deomposition provides a glimpse into the array of be-haviors shown by the di�erent data strutures in a single appliation, rangingfrom uniformly regular or irregular aess aross all major data strutures toa ombination of aess patterns for di�erent data strutures. There is nopattern in fration of footprint or total aesses that these data strutures o-upy. A data struture's aess and miss rank is often not the same, and thedistribution of misses among the major data strutures varies widely arossappliations. Aounting for 90% of DL1 misses requires between 2 and 25distint data strutures for di�erent programs. Finally, appliations whereirregular aesses dominate - suh as mf - show synergisti e�ets betweendata strutures; improving multiple data strutures simultaneously does sig-40



// omplex termination ondition not shownloop for ell = array[$random℄:if ell->lass == -1:ontinueblkptr = barray[ell->blok℄ // 8 bytestile = ell->tileptr // 16 bytesterm = tile->termsptr // 64 bytesloop 3 times:loop until term is null:net = term->neta = netarray[net℄ // 128 bytesb = term->termptr // 64 bytes = tmp_rows[net℄ // 8 bytesd = rows[net℄ // 8 bytesterm = term->nextterm // 64 bytesendendendFigure 3.3: Case study: Sequene of objets touhed by one of the main loopsin twolf. Size of eah objet in omments.ni�antly better than just improving eah of them in isolation. As we willshow, irregular appliations often exhibit di�erent aess patterns for eahdata struture in a single phase, ombining spatial, pointer and indiret array-index aess. This interleaving of di�erent types of aess is a hallenge forprefething methods that fous on just one type of aess pattern [23, 44℄.While 179.art and 183.equake have regular aess patterns, the oth-ers interleave spatial and pointer aess in omplex ways. This interleavingmay happen for three reasons. First, the appliation may perform strided41



aess through an array while dereferening pointer �elds from eah element(mf:nodes, 188.ammp:atoms). Seond, the appliation may perform stridedaess that uses the elements of one array to index into another (bzip2:quadrant,300.twolf:rows). This is a form of pointer traversal that urrent pointer prefeth-ing shemes [23, 76℄ often annot detet. Finally, the appliation may a-ess the elements of a data struture in irregular order, but eah objet mayspan multiple ahe bloks that are aessed sequentially (ammp:nodelist,twolf:netptr) due to large objet size or irregular objet alignment in theahe. Suh omplex interleavings are a hallenge to both spatial and pointer-based prefeth systems.Aess-pattern ase study: We now perform a more detailed analysisto illustrate the potential for improvement from overlapping memory latenyand the hallenges in onverting this potential. We fous on just one of ourbenhmarks - twolf - and look in its soure ode for insight into its behavior.Guided by the data pro�le in Figure 3.2 and by the more onventional odepro�le, our study yields Figure 3.3, the sequene of objets aessed in a ruialinner loop in twolf, responsible for 55% of all DL1 misses. This loop illustratestwo interesting phenomena. First, while programs as a whole often have alarge footprint, the footprint of eah loop iteration in an irregular appliation�ts easily in the DL1. Seond, most misses in appliations our on the �rstaess to an objet in a loop iteration.Sine di�erent data strutures an aess memory with a wide variety42



of aess patterns in a single program phase, it is important for the system tooptimize eah aording to its needs. Eah loop iteration has a small footprint,so it is feasible to prefeth future iterations without disturbing the data for theurrent iteration. However, prefething the data required for eah iteration ishallenging beause it inludes elements from di�erent data strutures withdistint aess patterns. Taken together, these insights suggest a model wheredata streams into the proessor in bundles of objets that eah iteration willuse. In the latter half of this dissertation we explore TwoStep, a onreteimplementation of this model.Having used the basi apabilities of DTrak to haraterize our appli-ations, we now explore novel uses of DTrak in asking and answering sophis-tiated questions on arhiteture design.3.7 Case study: Data struture ritialityOur �rst ase study onerns ritiality of memory referene. Severalreent studies have shown that not all ahe misses are equally important asmeasured in the amount of lateny that they expose to the proessor [92℄.In this ontext, does it make sense to simply use miss ounts to selet thedata strutures on whih to fous our attentions? To answer this questionwe augment DTrak to detet yles when no instrutions are retired, andassign responsibility for eah suh stall yle to the data struture referenedby the load or store at the head of the reorder bu�er [91℄. Our results showthat for our appliations the data strutures that ause the most misses are43



16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

17
7.

m
es

a
17

9.
ar

t
18

1.
m

cf
18

3.
eq

ua
ke

18
6.

cr
af

ty
18

8.
am

m
p

19
7.

pa
rs

er
25

6.
bz

ip
2

30
0.

tw
ol

f
sp

hi
nx

0

20

40

60

80

100

DS1
DS2
DS3
Stack

a. DL1 Miss-Rate (%)

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

17
7.

m
es

a
17

9.
ar

t
18

1.
m

cf
18

3.
eq

ua
ke

18
6.

cr
af

ty
18

8.
am

m
p

19
7.

pa
rs

er
25

6.
bz

ip
2

30
0.

tw
ol

f
sp

hi
nx

0

20

40

60

80

100

DS1
DS2
DS3
Stack

b. L2 Miss-Rate (%)

Figure 3.4: Deomposition of DL1 and L2 miss-rates by data struture. Theaggregate miss-rate for eah appliation is denoted by a horizontal line.
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almost always also the ones responsible for the most stall yles. There are twoexeptions to this trend. The �rst is in 179.art; the array tds auses only 2.1%of all ahe misses, but is responsible for 16.6% of all stall yles. This datastruture is ritial beause of the following loop that aumulates a subset ofits elements:for (tj=0;tj<numf2s;tj++) {if ((tj == winner)&&(Y[tj℄.y > 0))tsum += tds[ti℄[tj℄ * d;} This ombination of data-dependent branhes and omputation seri-alized by tsum auses the infrequent ahe misses in this loop to almost in-variably stall the pipeline. Our onlusion is strengthened by a study of thesoure ode. 179.art is a neural network simulator where learning ours byiteratively modifying two arrays of top-down and bottom-up weights { tds andbus respetively. While these two arrays are largely aessed in very similarways, the above loop is the only major aess pattern not shared with bus.The seond data struture that we observe ausing a disproportionate num-ber of stalls is the variable searh in the hess-playing benhmark 186.rafty,whih is responsible for 10.5% of all stall yles in spite of ausing just 0.2% ofall ahe misses. This global data struture ontains the hess position beingurrently analyzed, and is used to display the board on sreen. With the ex-eption of these two data strutures, the orrelation between miss ount and45



stall yle ount shows that data-struture ritiality is of limited usefulnessin the predominantly irregular programs that we study.A related idealized experiment that provides indiret on�rmation ofthis result explores the e�et of seletively providing di�erent data struturesperfet single-yle aess to memory. To model this ideal behavior, we sim-ulate ahe misses to spei� data strutures in a single yle, but ontinueto move data in these strutures through the memory hierarhy so as to notgive other data strutures an unrealistially generous view of ahe apaity.We �nd that seletively eliminating ahe misses in even the most importantdata struture in an appliation has limited impat on performane in a ma-jority of our appliations. While there are a few exeptions, namely 188.ammp,183.equake, it usually requires perfet memory for 2-5 major data struturesto bring performane lose to ideal. This result shows that future arhite-tural and ompiler enhanements will often need to optimize multiple datastrutures in di�erent ways to signi�antly improve overall performane inmemory-bound appliations. It also shows that DTrak is indeed highlight-ing bottleneks in the memory system when it ranks data strutures by missfrequeny.3.8 Case study: Competition for ahesWhile Figures 3.2.a and 3.2.b show the distribution of aesses to theDL1 and L2, Figures 3.4.a and 3.4.b show the orresponding miss-rates ateah level of the memory hierarhy. A ommon pattern in these �gures is for46
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these appliations. This and the previous experiment are good examples ofthe ways that DTrak an help the omputer arhitet with design deisionswhere traditional tools are unable to do so.3.9 SummaryAnalyzing our appliations by data struture on�rms and quanti�estwo nuggets of onventional wisdom that fous our attention in the rest of thisdissertation:1. \Appliations are not all alike." The number of data strutures thatontribute 90% of an appliation's ahe misses varies from 2 to 100.Appliations with similar aggregate DL1 miss-rates of 20% an exhibitmiss-rates of 2-40% for important data strutures. The wide variety ofbehaviors, and the fat that not all appliations have hot data strutures,on�rms the need for appliation-spei� system adaptation.2. Extremely irregular aess patterns may be found in the wild. 181.mfperforms bounded depth-�rst-searh over sub-trees; 300.twolf and 256.bzip2perform lots of indiret array aess; 188.ammp interleaves random pointertraversals with spatial aess over eah 2KB objet. As a result, ahemisses largely our on the �rst aess to an objet in a loop iteration,and prediting the objet eah iteration will aess an be diÆult.The ombination of these insights leads us to a prefeth system biased towardsomplex aess patterns. Sine the footprint of any given loop iteration is48



tiny relative to ahe apaity, we fous on orhestration at the loop iterationgranularity.In addition to these insights, DTrak inuenes the rest of this disserta-tion in two methodologial ways. First, it provides valuable infrastruture fordebugging optimizations as we desribe later. Seond, our analysis of ritialloads in Setion 3.7 suggests a metri to evaluate optimizations in shedul-ing - redution in stall yles. Sheduling does not eliminate ahe misses forirregular programs without muh spatial loality. Thus, ahe miss ountsand rates should remain unhanged in the presene of prefething. Measuringredution in stall yles provides a solution to this problem, quantifying thelateny tolerane of a prefething approah. One additional wrinkle is thatritial paths an be easily shifted by improvements or hanges to the applia-tion [28, 92℄. This suggests re�ning our metri to stall yle redution by datastruture, whih gives us a riher piture of how well a tehnique addressesthe pereived problem, and also of how muh speedup we obtain before hittingthe next bottlenek.In the next hapter, we extend these insights to phase behavior, againusing novel methodology to quantify phase variation in aess patterns, andproviding key infrastruture for seleting good simulation intervals from a high-level perspetive. Our haraterization then drives the design of TwoStep,whih provides a parsimonious basis set of mehanisms to give eah majorloop in an appliation a arefully tuned prefething strategy, speifying whatto prefeth, when to prefeth it, and where to prefeth it to.49



Chapter 4Phase analysis
This hapter extends our high-level haraterization of appliations bydeomposing appliation behavior by data struture and global program phase,and by translating this deomposition into a summary of major appliationaess patterns that is used in the design of TwoStep in the next hapter. Inthe proess, we make two ontributions to the state of the art in phase analysismethodology.Phase behavior has reeived muh attention in reent times [6, 52, 68,82℄, with the eventual goal of designing system hardware/software to adapt tohanging appliation requirements. Studies using Basi Blok Vetors (BBVs)explore their uses in lustering phases and deteting phase transitions in ano�ine [83, 84℄ and online [86℄ setting. One alternative to BBVs is the use ofprogram ounter or Extended Instrution Pointer Vetors (EIPVs) [6℄. An-other alternative onsists of more high-level metris based on ode struture,suh as register use vetors or loop vetors [52℄. All these studies share aommon workow. They generate the variation of some metri (suh as ahemiss-rate) over time, aggregated in some sampling period. They then try toidentify regions with `similar' behavior and the boundaries between suh re-50



gions. All these studies su�er from two major drawbaks:� They operate on aggregate phase data for deteting phase behavior.While this is suÆient for some appliations, we show in Setion 4.1that it an hide details of memory behavior.� They selet their sampling period in an ad ho fashion and use a sin-gle sampling period aross all their appliations to automatially detetphase boundaries [82℄. Nagpurkar et al. reently showed that the notionof phase boundaries is not absolute, and that the phase boundaries onepiks and the granularity at whih to view them depend on their even-tual purpose [68℄. This result suggests that automati phase-detetionalgorithms are deeply inuened by the sampling period at whih datais provided to them.Our methodology addresses both drawbaks. In Setion 4.1 we use DTrakto measure phase behavior on a data struture basis. In Setions 4.2{4.4 wedemonstrate a new tehnique based on spetral analysis that automates theproess of seleting a good sampling period for phase data. Rather than pikan ad ho sampling period and then automatially determine phase boundariesat that granularity, we automate sampling period seletion to yield a phasegraph where global phase behavior is more readily apparent.Applying these two methodologial improvements, we quantify the phasebehavior for eah appliation at an appliation-spei� sampling period in Se-51
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redued amplitude hanges also make automati phase detetion more diÆult,as we explore later in this hapter.This pattern is not unommon; six of the nine appliations we studyexhibit signi�ant di�erenes in data struture miss distribution in di�erentphases. Therefore in the rest of the results in this hapter we use our DTraktoolhain to generate time-varying miss-ount or miss-rate data for individualdata strutures rather than for the aggregate appliation as a whole.4.2 Sampling period seletion: OverviewOur seond methodologial innovation is a tehnique to view time-varying behavior at a sampling period that highlights global phase transitions.Our tehnique is based on two insights from spetral analysis: that inreasingsampling period is a proess of aggregation that has a damping e�et, and thatglobal phase behavior onsists of emphasizing rare (low-frequeny) transitionsover ommon (high-frequeny) ones. Figure 4.2 shows the temporal variationin DL1 miss ount for a single data struture in 183.equake by aggregatingmiss ount at three di�erent sampling periods: one sample every 10 millionyles, one sample every 180 million yles, and one sample every 500 millionyles. This �gure illustrates a general trade-o� for phase analysis, either of-ine or online. O�ine, overly frequent sampling puts too many data pointson a graph, making global trends harder to detet. Online, frequent samplinginreases overheads. Conversely, inreasing sampling period too muh reduesthe information ontent to lose to that of aggregate DL1 misses, defeating the53
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Volatility pro�les provide a onise summary of the phase behavior of an ap-pliation at di�erent granularities; we show that they suggest good samplingperiods in a straightforward manner: low granularities with low volatilities.We now desribe eah stage in detail, dwelling on the intuitions behind ourdesign deisions and the alternatives we onsidered.4.3 Sampling period seletion: The volatility metriPhase boundaries in a urve are dramati hanges in amplitude overtime. In seleting the right granularity to detet phase boundaries we wouldlike to highlight only the most important suh dramati hanges. Thus, thevolatility of a urve should answer the question: what is the largest magnitudeof amplitude hange ommonly seen in the urve? Let us begin by answeringthis question for the degenerate ase: with a urve ontaining just two points.We denote the urve onsisting of the values X1, X2 in adjaent time steps as[X1; X2℄.Volatility at a point: The urve [1:1; 1:2℄ has muh lower volatility thanthe urve [1; 10℄. This intuition is adequately aptured by our onventionalnotion of relative hange, or growth. A variable that doubles between adja-ent sampling intervals demonstrates higher volatility than one that grows orshrinks by 10%. We formalize this notion into the following volatility metriat a given time step. Given a stream [X1; X2; X3 : : :℄, the volatility at eahtime step is de�ned as: 55



Curve Point volatilities[1; 1; 1; 1; 1℄ f0; 0; 0; 0g[1; 1; 1; 1; 2℄ f0; 0; 0; 0:5g[1; 2; 1; 2; 1℄ f0:5; 0:5; 0:5; 0:5g[1; 10; 1; 10; 1℄ f0:9; 0:9; 0:9; 0:9gTable 4.1: Computing the point volatilities of some simple example urves.gt = abs(Xt �Xt�1)max(Xt; Xt�1) (4.1)gt is similar to the onventional notion of `growth', exept that it issymmetri: gt is 0.5 whether Xt has doubled (\grown by 100%") or halved(\shrunk by 50%") sine the last time step. This symmetry ensures that thevolatility between two values is the same regardless of whih omes �rst. Bythis de�nition, the urve [1; 10℄ has a volatility of 0:9, while the urve [1; 1:2℄has a volatility of 0:1. Even more trivially, the urve [1; 1℄ has a volatility of0.Summarizing the volatility of a urve: Given the above formulationfor the volatility of a 2-point urve, we an now view a urve with n points[X1; X2; X3 : : :℄ as a set of 2-point urves f[X1; X2℄; [X2; X3℄ : : :g, and we annow ompute the point volatility for eah of these. Table 4.1 shows the pointvolatilities of some simple example urves. Notie that eah point volatility liesin the open interval (0; 1), that equal adjaent values yield a point volatilityof 0, and that rapid inreases and dereases in value ause high volatilities.Figure 4.3 illustrates this proess for a urve with more points, showing the56
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lion yles and run 164.gzip on top of it. This experiment yields us a stream ofdata points orresponding to the DL1 miss ount for inbuf in every million-yle interval of exeution. Aggregating these data points in di�erent waysyields urves for the DL1 miss ounts every 2 million yles, every 3 millionyles, and so on. We ompute the volatility for every suh urve from sam-pling period of 1 million to 500 million yles, and plot the resultant volatilitiesagainst sampling period to yield the graph of Figure 4.6. The points on thisgraph with relatively low volatilities represent sampling periods where globalphase behavior is more salient and easily diserned. The next two setionsnow elaborate on the proess of seleting a good sampling period given thedi�erent types of volatility pro�les.4.5 Results: Volatility pro�lesTo generate volatility pro�les for our appliations, we apply the pro-edure from the previous setion on streams for DL1 and L2 miss ount andmiss-rate of the most frequently missing data strutures as generated by themethodology outlined in Setion 3.3. Aross the appliations we study, we �ndthat the DL1 and L2 miss ounts for di�erent data strutures largely exhibitvolatility pro�les with the same trends, and with minima at the same samplingperiods. Therefore, we fous on the DL1 miss-ount stream for a single majordata struture in eah of our appliations. The left-hand graphs in Figures 4.7and 4.8 summarize the volatility pro�les for these data strutures.The volatility pro�les in Figures 4.7 and 4.8 may be lassi�ed into61



three ategories. First, 175.vpr, 179.art, 181.mf, and 300.twolf show onsis-tently low pro�les, so that an arbitrary seletion is likely to highlight globalphase behavior. Seond, 177.mesa, 183.equake, and 256.bzip2 exhibit mono-tonially dereasing volatility pro�les as a result of the natural damping e�etsof aggregation with inreasing sampling period. In these ases we empiriallyselet the smallest sampling period with a volatility of less than 0:2. Thethird and �nal ategory onsists of 164.gzip and 188.ammp, appliations wherethe volatility pro�le is more omplex. We explain these volatility pro�les ingreater detail in the next setion, and desribe our more ad ho methodologyto determine good sampling periods for these appliations.4.6 Explaining and handling non-monotoni volatilitypro�lesThe variety of volatility pro�les in Figures 4.7 and 4.8 bears somesrutiny. We began this hapter with the assumption that the damping e�etof aggregation would ause volatility to monotonially drop with inreasingsampling period. However, our results show that this is not always the ase;164.gzip and 188.ammp have partiularly omplex, non-monotoni volatilitypro�les. These phenomena are explained by the disrete set of sampling pe-riods available to us, and the interation of these disrete points with theintrinsi periodiity of an appliation.At a high level an appliation onsists of nests of loops that aess dif-ferent data strutures in di�erent ways. The aess pattern of a given data62
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may have damped out all phase behavior. Understanding suh interationsin appliation phase behavior is a hallenge for future researh. In the on-text of this study, �nding a low-volatility sampling period required graduallyre�ning volatility measurements for 177.mesa and 188.ammp. As a onreteexample of this, Figure 4.9 shows the phase behavior seen for Depth Bufferin 177.mesa at a sampling rate of 10 million yles. Comparing this urve withthat in Figure 4.7 shows how widely dissimilar di�erent a stream an look atdi�erent sampling periods, and how seleting a bad sampling period an o-lude gradual periodi patterns. The global phase behavior seen in Figure 4.7is only observable in a narrow window of sampling periods, from 200 to 300million yles. O�ine phase detetion tehniques that fail to use samplingperiods in this range would show either too many phase transitions or too few,oluding the more gradual phase behavior in either ase. Similarly, onlinephase detetion tehniques that fail to adjust the sampling period would beunable to adapt e�etively to the hanging requirements of this appliation.Summary: The goal of the last 4 setions has been to ome up with a rig-orous methodology to selet a good sampling period at whih to view andoperate upon graphs of temporal behavior. Our proposed methodology, basedon a volatility metri, ful�lls this purpose by onisely summarizing the meritof every point in the state spae of possible sampling periods. The next step, ofseleting a good sampling period, is more ad ho. The lak of full automationis a result of one major fator: eÆieny onsiderations fore us to maintain66



a lower bound on the granularity at whih we an vary sampling period. In-terations between this sampling period and intrinsi periodiities of di�erentstreams fore us to manually inspet phase graphs for some appliations ata few low-volatility sampling periods before settling on the period with theleanest expression of global phase behavior. Our general heuristi, though,is to selet the lowest possible sampling period with a low enough volatility.This orresponds to points to the bottom and left in our volatility pro�les.4.7 Results: Phase behavior at a good sampling periodHaving desribed in detail the proedure for seleting a good samplingperiod for eah of our appliations, we an now study the phase behavior ofeah appliation at this appliation-spei� sampling period. The right-handside graphs in Figure 4.7 and 4.8 summarize the phase behavior of the DL1miss ount for one major data struture in eah of our appliations. Eah ofthese graphs is labelled with its sampling period of N yles as seleted fromthe volatility pro�le on the left, and plots DL1 miss-ount for a single datastruture per N yles.Our results an be broken down into three ategories. First, appli-ations with no phase behavior past initialization: 179.art, 183.equake, and300.twolf. Seond, those with simple phase behavior between a well de�ned setof phases with easily-diserned boundaries: 164.gzip, 181.mf and 188.ammp.Third, more omplex urves with poorly de�ned phases and fuzzy phase bound-aries: 175.vpr, 177.mesa and 256.bzip2.67
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Figure 4.10: Appliations with inversion: a di�erent data struture ontributesthe most misses in eah phase. (sampling period in parentheses)68



Categories 2 and 3 both ontain appliations with phase inversions,where a di�erent data struture ontributes the most ahe misses in eahphase. Figure 4.10 shows the phase behavior of the major data strutures inthose of our appliations with suh inversions { 164.gzip, 175.vpr and 181.mf.We use this data on phase transitions and inversions in these appliations todistill eah of our appliations down to a onise desription of their majoraess patterns.4.8 Results: Translating phase behavior into aess pat-ternsThe phase behavior of an appliation an be used for a variety of pur-poses as detailed in the next setion. In this disseration we use it to help drivethe design of the TwoStep prefeth system in the seond half of this disser-taion. Combining our insights from DTrak with ode pro�les allows us toidentify the di�erent aess patterns in eah phase, and the roles of di�erentdata strutures where inversions our. By manually orrelating ode pro�les,the data pro�les generated by DTrak, and the phase behavior data from theprevious setion, we are able to onisely summarize the major aess patternsin eah of our appliations.� 164.gzip onsists of alternating phases that read a setion of input datainto a bu�er, and ompress the ontents of the bu�er. Both phases havesequential aess patterns with lots of spatial loality.69



� 175.vpr onsists of two data strutures: a heap of objets, eah ontaininga rr node. The heap is aessed in a halving or doubling stride, whilerr nodes are more irregular. The interleaving of aesses to the two ishighly data driven.� 179.art onsists of two 2-D arrays: bus and tds. Both are aessedsimultaneously and sequentially.� 181.mf onsists of alternating phases of depth-�rst-searh over a sub-tree of nodes, and heap sort over a heap of ars.� 183.equake onsists of regular sequential aess over several 3-D arrays.� 188.ammp onsists of a linked list traversal through atomlist, inter-spersed with a pass of muh more irregular aess every 12-15 iterationsin order to update 200 pointers to spatially neighboring atoms.� 256.bzip2 performs irregular indiret array aesses over three distintarrays | zptr, blok, and quadrant | using indies in one array toaess another.� 300.twolf ontains a single phase with a omplex aess pattern summa-rized earlier in Figure 1.2, interleaving spatial, pointer and indiret arrayaess.These aess patterns drive the design of several aspets of the TwoStepprefeth system in the seond half of this dissertation. These aspets inlude70



the basi insight that suh a wide variety of tehniques requires ompiler-driven poliies to determine what to prefeth, the design of the ISA for theTwoStep prefeth ontroller, a quantitative analysis of the timing onstraintson dependent prefethes to determine that the ontroller must be plaed atthe L2, and the need for auxiliary strutures and eÆient ow ontrol in orderto perform prefething into the DL1. We explain these onsiderations in moredetail in the next hapter.4.9 SummaryAs omputers have beome heaper and more aessible the trend inthe last 30 years has been for appliations to grow more diverse (with new at-egories like streaming media and personal produtivity), more omplex (wordproessors hek grammar and also perform speeh reognition and synthesis)and more memory-intensive. These trends are likely to ontinue in future: thenumber of appliations running onurrently on a system, the variety of appli-ations, and the variety of phase behaviors in an appliation are all likely toinrease. In the fae of these trends, one-size-�ts-all heuristis are insuÆient,and adaptive approahes inrease in importane.Our response to these trends has been a detailed haraterization ofnine appliations with a wide variety of aess patterns, �rst deomposing theiraggregate memory hierarhy behavior by data struture in the previous hap-ter, and then further deomposing these results by global program-exeutionphase. Our detailed haraterization yields a onise summary of the major71



aess patterns that we use to drive the design of TwoStep in the rest of thisdissertation.While we fous on a single appliation for this detailed harateriza-tion, our novel methodology methodology an be applied to systems researhin a variety of ways. In the past, identifying phase behavior has been useful inseveral areas, suh as adaptively varying proessor issue width or ahe apa-ity [6, 86℄. Our data shows that augmenting these past online approahes withways to adaptively tune the granularity of phase transition deisions will in-rease their e�etiveness. Tuning phase granularity online is an open problemthat will need to be addressed in future. In o�ine phase analysis, ombin-ing prior implementations with data struture deomposition and the orretsampling period an provide a more rigorous framework for phase analysis andmore sophistiated insight into many areas of appliation behavior.
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Chapter 5TwoStep: Preomputation-based prefethingwith lightweight throttling
Our study of data strutures and phase behavior in di�erent applia-tions shows the wide variety of aess patterns modern systems have to dealwith. The seond half of this dissertation desribes and evaluates our approahto appliation-driven prefething, a preise set of mehanisms that allow indi-vidual appliations to be optimized at runtime aording to their needs andaess patterns. Our prefeth system is alled TwoStep. TwoStep ombinesompiler-generated preomputation threads, a prefeth ontroller in the L2that runs ahead of the main program, and lightweight mehanisms for ow-ontrol and throttling. It is designed to work in the presene of truly omplexaess patterns interleaving pointer and spatial aess that prior approaheshave struggled with. In the rest of this hapter, we desribe the hallengespresented by suh appliations to previous approahes, desribe the designdeisions that led to TwoStep, and provide initial results over a set of hand-rafted kernels for four of our appliations in order to show the soundness ofthe basi miroarhiteture design.
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5.1 Drawbaks in past approahesA variety of mehanisms have been used in prior prefething studies.We now survey the prior work on prefething in terms of its onstituent meh-anisms separated along four diretions: where a prefeth originates, what toprefeth, when to prefeth it, and where to prefeth to. The proess of thesurvey reapitulates the rationales for our design deisions for TwoStep.Prefeth origin: There are three broad hoies in deiding where prefethesshould originate: in the main proessor as part of the appliation program [12,41, 56, 59℄, in the main proessor as a separate thread [11, 66, 93℄, or in thelowest level of the ahe hierarhy faing main memory [47℄. While the latterrequires more overhead and book-keeping to orhestrate, it has an advantagethat DTrak tells us is ruial: it redues the lateny between dependentprefethes. Sine prefethes have to go only one way from L2 to proessor,both baseline lateny and queuing delay due to bandwidth onstraints areminimized. The ost is additional hardware omplexity.What to prefeth: There are 4 broad hoies in deiding what to prefeth:addresses spatially lose to reent addresses [12, 55, 59℄, reently-fethed ahe-lines for pointers [23℄, pattern detetion tables (stride or address-orrelation) inhardware [40, 41℄, and �nally ompiler-generated addresses [56, 59℄. Of these,the �rst three are tuned to narrow varieties of aess-patterns; responding toarbitrarily omplex aess patterns requires ompiler intervention. The ost is74



ompiler omplexity. Also, ompiler-based prefeth shemes in the past haveoften struggled with the next deision of prefeth timing.When to prefeth: There are two opposing onstraints on timing prefethes:prefethes need to our early enough relative to use to overlap their entirelateny. They also need to our lose enough to the use not to evit moreproximally-useful data and ause ahe pollution. Past approahes on tim-ing prefethes have largely been onstrained by the design deision of whatto prefeth: ompiler-based approahes [56, 59℄ have relied on the ompilerto time prefethes as well, resulting in brittle strategies that annot adaptto hanging runtime requirements; hardware-based approahes [40, 41℄, havestruggled to issue prefethes early enough sine the miroarhiteture's view ismore loal than a ompiler's. There has been reent work on issuing systemsof prefethes [55℄, often under ompiler guidane [97, 99℄ rather than singleprefethes at a time in order to inrease available slak. This approah is themost promising among the alternatives. However, the hallenge is to meetoniting timing onstraints without running into either the drawbaks ofsoftware approahes (rigid strategies) or hardware ones (overhead in detet-ing and avoiding pollution). The prioritization deision between independentsequenes of prefethes [22, 102℄ an also ause design omplexity.Where to prefeth to: This deision presents 3 major options: prefeth tothe L2, prefeth to the L1 or prefeth to an auxiliary struture onneted to the75



ahes. Prefething to the L1 is a hallenge beause its small apaities inreasethe risk of pollution. As a result, most reent approahes have prefethed onlyto L2. Spatial prefeth shemes have explored prefething to an auxiliarystruture alled a stream bu�er [42, 85℄ in order to avoid L1 pollution, butat the ost of a slightly inreased lateny somewhere along the ritial pathof ahe aesses. Stream bu�ers impose ordering onstraints on the use ofprefethes, however; as a result they have not been used with suess forirregular appliations.This analysis highlights the issues in prefething for highly irregularaess patterns. We would like to have the ompiler selet what to prefeth butdeouple the deision from prefeth timing. We would like to issue prefethesfar in advane from the L2 but allow the proessor to ontrol the prefeththread to avoid pollution. We would like to prefeth to L1 but avoid pollution.Our key insight is that deoupling eah prefeth into 2 stages solves all theseproblems with low ost in design omplexity or overhead. We now desribeour aptly-named TwoStep prefeth sheme.5.2 An overview of TwoStepFigure 5.1 shows a high-level shemati for our TwoStep miroarhite-ture, highlighting the major omponents of the prefeth system - the prefethontroller in the L2, the FIFO between L2 and DL1, and ISA enhanementsto orhestrate data transfer between FIFO and DL1. TwoStep performs long-range prefething in the L2 under the diretion of a ompiler-generated prefeth76
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it returns. When it returns, the prefeth ontroller pushes the objet (a �xednumber of ahe-lines) onto the FIFO between L2 and DL1 and then repeatsthe proess for the next instrution in the prefeth program. Objets pushedto the FIFO wait to reah the head of the queue. Pull and load instrutions inthe main program then respetively transfer the objet to the DL1 and startusing it. Data in the FIFO is virtually tagged, and the prefeth ontroller hasaess to a private TLB. TLB misses ause the prefeth program to stall justlike any other exeptional ondition.Rationale: This design provides a better solution to several issues that arehallenging to previous studies. The prefeth program allows the ompiler toeÆiently enode what must be prefethed, and to handle arbitrarily om-plex ombinations of interleaved spatial prefething and pointer-hasing. Theompiler enodes this information without onstraining hardware on whento initiate prefethes, allowing hardware to manage resoures better and is-sue prefethes in a timely manner when resoures are free. In pratie, theprefeth program is able to run far ahead of the main program. Running aheadis feasible beause there is no possibility of ahe pollution, and the prefethprogram is throttled on a simple ondition - when the FIFO �lls up. The �naltransfer between FIFO and DL1 is initiated by pull instrutions at the start ofloop iterations that speify only how many ahe-lines to transfer, not what itmust ontain. In the ommon ase, this allows the footprint of eah iterationto be brought into the DL1 ahead of its use. In the worst ase, pull instru-78



tions avoid deadlok when the FIFO ontains useless data, while limiting thepollution in the ahe to a strit upper bound. Prioritization is no longer anissue sine the ompiler expliitly sequenes prefethes.5.3 The prefeth ontrollerWe now provide a detailed desription of the TwoStep miroarhite-ture in this and the next setion, enumerating alternatives and design deisionsat important points. We designed TwoStep to be simple, with an orthogonaland parsimonious ISA, while making the ompiler's ode generation task easierand mathing the ISA to ommon patterns seen in our haraterization usingDTrak.We begin with the L2 prefeth ontroller, the point of origin of eahprefeth in TwoStep. The prefeth ontroller reeives two sets of inputs: aprefeth program divided into kernels, and initial register values before runninga spei�ed kernel. The prefeth program is loaded into the instrution store onappliation startup, while register initialization is performed under proessorontrol at the start of di�erent program phases. In the rest of this setion weassume both program and register values have been initialized, and desribethe workow for a single instrution in the prefeth program. Initializationonditions are spei�ed in the next setion.Table 5.1 desribes the ISA of the TwoStep prefeth ontroller. Theinstrutions in TwoStep's ISA operate on 32 word-length integer registers, onePC register and immediate operands. TwoStep's workhorse instrutions are79



Fmt Instrution Semantisarith 2 Æ 2 f+; �;%;&; jgf add;mul;mod; and; orgI arith Rd; Rs; offset; size Rd  Rs Æ offset � 2sizeI arithp Rd; Rs; offset; size Rd  Rs Æ offset � 2size; prefethRdII arith2 Rd; Rs; Rt; size Rd  Rs ÆRt � 2sizeII arith2p Rd; Rs; Rt; size Rd  Rs ÆRt � 2size; prefethRdI load Rd; Rs; offset; size Rd  Rs + offset � 2size; prefethRd;Rd  [Rd℄I loadp Rd; Rs; offset; size Rd  Rs + offset � 2size; prefethRd;Rd  [Rd℄; prefethRdII load2 Rd; Rs; Rt; size Rd  Rs +Rt � 2size; prefethRd;Rd  [Rd℄II load2p Rd; Rs; Rt; size Rd  Rs +Rt � 2size; prefethRd;Rd  [Rd℄; prefethRdIII jeq target; Rs; offset if Rs == offset: RPC = targetIV jeq2 target; Rs; Rt if Rs == Rt: RPC = targetIII jlt target; Rs; offset if Rs < offset: RPC = targetIV jlt2 target; Rs; Rt if Rs < Rt: RPC = targetIII jle target; Rs; offset if Rs <= offset: RPC = targetIV jle2 target; Rs; Rt if Rs <= Rt: RPC = targetnext ++ FIFO:tailInstrution formats (24-bit instrutions):I Opode (5) Rd (5) Rs (5) size (3) offset (6)II Opode (5) Rd (5) Rs (5) size (3) Rt (5)III Opode (5) Rs (5) target (8) offset (6)IV Opode (5) Rs (5) target (8) Rt (5)Field details:Field Width (bits) Enoding Addressing modeRs; Rt; Rd 5 Unsigned Registeroffset 6 2's omplement Immediatesize 3 2's omplement Immediate[x℄ - Unsigned IndiretTable 5.1: The ISA for TwoStep's prefeth ontroller.80



C statement TwoStep equivalent++i; add Ri; Ri; 1; 0 = a + b; add2 R; Ra; Rb; 0 = &Arr[a℄; add2 R; RArr; Ra; 0int Arr[℄;  = Arr[a℄; load2 R; RArr; Ra; 2 ==22 == sizeof(int)int* Arr[℄;  = Arr[a℄; load2p R; RArr; Ra; 2 = &a ! fld; addp R; Ra; offset(fld); 0 = a ! fld; load R; Ra; offset(fld); 0Obj* ;  = a ! fld; loadp R; Ra; offset(fld); 0Table 5.2: Some ommon aess patterns translated into the TwoStep ISA.of two major varieties: arithmeti and load instrutions. Both have a uniformformat: Op Rd; Rs; f; size (5.1)Eah instrution sales f by an objet-size fator 2size, ombines theresult with register Rs, and stores the result in register Rd. f may be eithera seond register (Rt) or a signed immediate operand (o�set). There are �vevarieties of arithmeti operations: arithmeti addition, multipliation, andremainder; and logial onjuntion and disjuntion. Subtration is providedusing negative o�sets, while logial left- and right-shifts are provided usingpositive and negative size exponents, respetively.Aessing main memory is the fundamental goal of TwoStep, and theISA provides two major ways to prefeth data into the L2. The �rst is the loadinstrutions, whih at like the orresponding add instrution using indiretaddressing. Indiret addressing is implemented by issuing an L2 ahe-line-81



// R1: root// R2: value being searhed.loop:jeq ontinue, R1, 0load R3, R1, node_value, 0 // R3 = R1->value;jeq ontinue, R3, R2jlt else, R3, R2then: load R1, R1, node_left, 0 // R1 = R1->left;jeq loop, R1, R1 // unonditionalelse: load R1, R1, node_right, 0 // R1 = R1->right;jeq loop, R1, R1ontinue:Figure 5.2: A simple TwoStep kernel to perform binary searh.aligned prefeth to main memory if neessary, waiting for the prefeth to re-turn, and then performing a simple opy from L2 into Rd. Seond, arithmetiand load instrutions both have variants | denoted by the p suÆx | thatprefeth the ontents of Rd from main memory after omputing Rd. These twotehniques are ombined in the loadp instrution, whih performs a simple add,prefethes Rd, performs the reursive indiret aess Rd = [Rd℄, and prefethesRd again. These steps are performed serially, and eah step waits for prefethesto �nish exeuting before proeeding to the next step. All prefethes are per-formed on virtual addresses; in our experiments, we use a physially indexedphysially tagged (PIPT) L2 ahe, and we therefore provide the prefeth on-troller with a TLB for translation. TwoStep prefethes are treated just likedemand fethes beause of their near-perfet auray | they are not pri-82



oritized di�erently, and they are fethed into the most reently used (MRU)way of the L2. Table 5.2 summarizes the di�erent varieties of prefethes pos-sible in the TwoStep ISA by mapping them to high-level C aess patterns.For example, addp orresponds to strided prefeth, while loadp orresponds topointer prefeth. The di�erene between add/load and addp/loadp is primarilywhether the destination opode is a pointer that is dereferened in the urrentkernel. In addition to arithmeti and load instrutions, the TwoStep ISA on-tains two additional instrutions: ontrol instrutions and the novel next in-strution. The ontrol instrutions are straightforward, onsisting of two va-rieties of onditional branh to target depending on omparison between thetwo operands. The next instrution is used for ow ontrol and explained inthe next setion. Figure 5.2 shows a simple prefeth program with a singlekernel | to perform binary searh.5.4 Flow ontrol: pull and nextThe prefeth ontroller in the previous setion prefethes only to L2 andan run arbitrarily far ahead of the main program on the proessor, inreasingthe risk of ahe pollution. In order to address both drawbaks, we add a FIFOstruture between DL1 and L2, with a width of one DL1 ahe-line. Everyinstrution in the TwoStep ISA knows how many ahe-lines it will prefethand only begins exeution if there is room for an equivalent number of DL1ahe-lines in the tail of the FIFO. Cahe lines in the head of the FIFO are83



onsumed by pull instrutions in the main program, whih onsume ahe-lines from the head of the FIFO and transfer them into the MRU ways of theDL1, ausing evitions as neessary. The �rst ahe-line returned by a Pullinstrution takes 4 yles, and every subsequent ahe-line takes 1 yle.The e�et of the pull instrution on ow ontrol is non-trivial. Theobvious option is to give a pull instrution the format pull x, where x is animmediate operand. However, suh an approah implies that the number ofahe-lines assoiated with a loop iteration must be a stati onstant. Everyprefethed loop must have the same ahe footprint along all paths. There aretwo ways to maintain this invariant:1. Insert extra pulls at eah branh of onditionals with unbalaned foot-prints. This approah introdues signi�ant overhead in the instru-mented appliation sine nested onditionals are extremely ommon. Wequikly disarded this option.2. Rely on the ompiler to ount footprints along di�erent paths, to insertthe largest possible footprint for a loop, and to insert padding push in-strutions (addp < reentregister >; 0) into some paths of the prefethprogram. This approah auses extra overhead in the prefeth program;as we show later, this overhead is not signi�ant. However, it also ausesunneessary pulls throughout an appliation, and that signi�antly im-pats the lateny of pulls into DL1. Another major drawbak is the
84



inrease in ompiler omplexity neessary to trak footprints for eahpath in a loop iteration.Sine neither option is e�etive, we onvert the pull instrution to take noopodes but instead maintain the ount of ahe-lines to pull in hardware.Our hardware for maintaining pull ounts onsists of two piees: a seond,ount FIFO to maintain ount information, and the next instrution in theTwoStep ontroller ISA. Every push to the main FIFO from the prefethprogram inrements the ounter at the head of the ount FIFO, while nextinstrutions at the start of every loop iteration in the TwoStep prefeth kernelbump up the pointer to the tail of the FIFO, reating and initializing a newount. Pull instrutions now read the head of the ount FIFO to determine thenumber of ahe-lines to transfer. The spae overhead for this enhanementis minor, a few bits for every ahe-line of FIFO apaity (< 32 bytes in thebaseline ase). There is no time overhead sine the ompiler guarantees theount to be at least 1, and reading the ount FIFO an be overlapped withthe transfer of the �rst ahe-line.Abnormal situations: So far we have addressed the ommon ase in theexeution of a prefeth kernel: the prefeth kernel spends less time per iterationthan the main program and thus keeps the FIFO oupied. Periodially theFIFO �lls up and auses the prefeth program to stall until there is room.There are two abnormal exeptions to onsider: when the prefeth threadgenerates invalid prefethes, and when it falls behind the main program. The85



hallenge in eah ase is �rst to maintain synhronization between main andprefeth programs, and seond to avoid polluting the ahe. Prefethes toinvalid addresses do not stall the prefeth thread; instead the prefeth threadinserts invalid ahe-lines into the FIFO in order to maintain synhronization.When the prefeth thread falls behind the main program the FIFO emptiesout. Subsequent pulls inrement a ounter when they are unable to pop itemso� the FIFO. The ounter provides the prefeth program with some slak toath up with the main program, as future alls to next prefethes derementthe ounter rather than push items on the pull-ount FIFO. If the ounterdrops bak to zero the prefeth thread an start pushing items onto the FIFOagain. If the ounter instead saturates to some maximum level, usually FIFOapaity, the prefeth thread is aborted.5.5 Maintaining ohereneTwoStep maintains a opy of a program's data in the FIFO; it is pos-sible for this data to beome stale in some situations. For example, onsider asenario where the main program fethes, writes to and and evits a ahe-linefrom the DL1 between the time that ahe-line is pushed into the FIFO bythe prefeth ontroller and the time it arrives at the head of the FIFO and istransferred to the DL1. The main program ould now end up reading staledata. Handling oherene requires mehanisms and poliies for detetion andreovery. There are two broad tehniques to detet a oherene onit be-86



Instrution Semantispull Transfer ahe-lines from FIFO to DL1 as desribedin Setions 5.4 and 5.5.ropy Rd  Rp Copy the ontents of proessor register Rp to TwoStepregister Rdstart p Copy immediate �eld p into TwoStep PC register.Table 5.3: ISA extensions for the main general-purpose proessor.tween ahe and FIFO: �rst, san the FIFO for dupliates when pushing, andseond, to san the FIFO for dupliates when pulling. Similarly, reoveringfrom a onit presents two options: either ush the FIFO, invalidating all itsontents without hanging FIFO size in order to preserve synhronization, orinvalidate oniting ahelines. Both detetion and reovery an be speededup by using a hardware hash-table for �ltering heks. Using suh a hash-tableimplementation implies that searh is fast, and therefore invalidating just on-iting ahelines is uniformly preferable to invalidating the entire ontents ofthe FIFO. Later in this hapter we examine the e�ets of oherene onits onthe bene�ts of TwoStep in an idealized manner, without ommenting furtheron the low-level mehanisms for oherene detetion and reovery.5.6 Initializing registers before kernel exeutionWe onlude our desription of TwoStep with a desription of the proe-dure for initializing a prefeth thread and ativating it. Table 5.3 summarizesthe extensions to a general-purpose proessor ISA required by TwoStep. De-sign deisions behind the pull instrution has already been overed in detail.87



In addition, the proessor requires two types of instrutions to setup and kiko� prefeth programs for di�erent program phases. The �rst is ropy to opyproessor registers into their ounterparts in the L2 ontroller, supplying theprefeth kernel with all neessary inputs. After some number of ropy instru-tions, the main program then exeutes a start instrution to set the PC registerof the L2 ontroller and ommene prefeth kernel exeution. Overheads inthese latter two instrutions are easily tolerated; in our implementation, eahropy and start instrution takes up 10 instrution slots in the main proes-sor pipeline without impating prefeth thread performane. This overheadshould be a onservative estimate of the most likely implementation for theseinstrutions in a prodution setting | using memory-mapped I/O.5.7 Interations between pulls and stok ompilersOne issue arose in our implementation beause we hoose to instrumentthe main program at the level of the soure ode just like with DTrak, ratherthan in the binary. As a result, pull instrutions within loop nests an perturbthe ode a onventional ompiler generates. Sine pull instrutions our in theinner loops of the appliation, any suh perturbane is likely to ause signi�antdegradation in performane. Sine the Alpha ompiler we use is not awareof their semantis, this enoding has hanged several times to work aroundidiosynraies in optimization poliies. Prior versions of the pull instrutionaused the ompiler to suppress loop unrolling and software pipelining for tightloops ontaining pull instrutions. Our urrent version maintains pointers to88



Feature Size/Value#Registers 32Instrution store 2KBFIFO apaity 2KBPull lateny 4 for �rst ahe-line1 yle for subsequent ahe-linesPrefeth ontroller TLB apaity In�niteTable 5.4: Baseline TwoStep on�guration. Proessor on�guration in Ta-ble 3.1.eah of the memory-mapped addresses used for instrumentation, in order tokeep the ompiler from hoisting these loop-invariant stores out of the loop theyare intended for. In a prodution setting the ompiler's poliies will have tobe modi�ed to ignore pull instrutions.5.8 Experimental MethodologyIn order to assess the feasibility of TwoStep, we evaluate it over 8 ofour appliations in the rest of this disseration. Benhmark hoie was largelydriven by the haraterization detailed in Chapter 3: 300.twolf, sphinx, and181.mf are irregular appliations with the most intensive traÆ to memory;183.equake is a regular memory-intensive appliation; 179.vpr and 188.ammpare irregular appliations with moderate memory traÆ; �nally, 164.gzip and179.art are regular appliations with low memory traÆ. This hapter's initialexploration using hand-rafted prefeth kernels further fousses on just 4 ofthese appliations: 179.art, 181.mf, 300.twolf, and sphinx. We run these ap-pliations on a version of sim-alpha [25℄ enhaned with an implementation of89



TwoStep prefething. Hints are used to implement pulls as well as demaratethe endpoints of eah simulation interval in terms of high-level loop iterations.We speify high-level simulation start- and end-points for eah appliation inorder to make onsistent measurements aross di�erent binaries with and with-out pull instrutions. Both baseline and transformed odebases are ompiledwith the aggressive Alpha GEM  ompiler [75℄. Table 3.1 earlier summarizedthe baseline demand-fethed mahine on�guration; Table 5.4 now enhanesthis on�guration with a baseline TwoStep on�guration, speifying the size ofthe instrution store, the default FIFO apaity, Pull lateny, and TLB apa-ity. Sensitivity results at various points in the next 3 hapters will motivatethese design hoies.Seleting a baseline mahine on�guration: Our baseline inludes noprefething in the data ahes. This deision was made for two reasons:1. Neither the Alpha 21264 nor most past literature on prefething inludedhardware prefething in the baseline. By following preedent, we allowonvenient omparison with prior work.2. Not all prefeth shemes an be favorably ombined with eah other.Subtleties in the design of di�erent prefeth shemes a�et interationsbetween them. By using a purely demand-fethed baseline, we avoidfavorable or unfavorable perturbations to our results. This approahallows us to safely explore interations with other prefeth shemes inChapter 7. 90



Comparing TwoStep with other prefeth tehniques: We now brieyoutline our methodology for omparisons with other prefeth tehniques, bothusing hand kernels in the rest of this setion, and using the TwoStep ompilerin Chapter 7. The TwoStep ompiler is based on C-to-C translation usingthe C-Breeze ompiler toolkit [30℄, oupled with the same optimizing AlphaGEM  ompiler in the bakend. Our major omparisons are with Taggedprefeth [87℄ and a family of region prefething tehniques: Sheduled RegionPrefething (SRP) [55℄ and Guided Region Prefething (GRP) [99℄.Tagged prefeth prefethes the next ahe-line on an L2 ahe miss,and it marks ahe-lines as prefethes using an extra tag bit to mark non-speulative data. This bit is set for demand fethes on initial feth, and forprefethes on their �rst non-speulative use. This approah allows limitedlookahead and onomitant improvement for simple spatial patterns, but failsto improve more irregular appliations.SRP onsists of a sheduler at the L2 that prefethes data from mem-ory in 4KB-aligned regions around addresses ausing ahe misses. The owof prefethes is tuned to not slow down the proessing of demand fethes; de-mand fethes are prioritized over prefethes in the ahe hierarhy (old andunproessed prefethes are silently dropped), and prefethes are plaed in theLRU way of the L2 to redue ahe pollution for appliations with irregu-lar aess patterns. GRP augments these region prefeth mehanisms withompiler-generated hints for pointer as well as region prefething that serve toimprove auray and eliminate region prefething in irregular appliations.91



The tehniques we ompare TwoStep with span the spetrum from thestate of the art in prodution hardware to the state of the art in researhprototypes. Tagged prefeth is a simple hardware mehanism that exempli-�es mehanisms inluded in many prodution proessors. As suh, it pro-vides a ommon baseline of prodution mahines to ompare against. Weseleted GRP and SRP as our examples of more reent researh for threereasons. First, we wanted the tehniques we ompare with to be relativelyreent, and reasonable exemplars of the state of the art, showing sophisti-ated deisions for prefeth seletion, timing and pollution-avoidane. Se-ond, we wanted a broad overage of both hardware and software tehniques,and of tehniques addressing both spatial and pointer prefeth. Third, wewere onstrained by methodologial onstraints of easily-aessible infrastru-ture. Choosing a family of tehniques allows us to perform omparisons arossjust two parallel ompiler-simulator toolhains | C-Breeze+TwoStep+sim-alpha and Sale+Region prefeth+sim-outorder [99℄ | thereby utting downon our infrastruture-management overhead and also on the baselines we needto trak. While the mahine on�gurations are largely the same, GRP andSRP use the sim-outorder miroarhiteture to run Alpha ISA binaries [9℄rather than the detailed model of the Alpha 21264 that we use [25℄. In addition,GRP is ompiled for the Alpha ISA using the Sale researh ompiler [62℄.
92



Feature 181.mf 300.twolf 179.art sphinxPrefeth program size 52 37 29 100(1-byte instrutions)Cahe-lines pulled per inner loop 3-12 2-11 1 1-7iteration# Phases per topmost iteration 3 1 1 5# Distint loop nests 8 1 7 1Max nesting depth 2 3 2 3Table 5.5: Vital statistis of our hand-rafted prefeth programs5.9 Preliminary evaluation with hand-rafted prefethkernelsThis setion summarizes some initial �ndings of our study, using hand-rafted prefeth kernels to evaluate TwoStep. We begin with hand-raftedkernels for two reasons. First, they allow us to explore the potential of our ap-proah independent of ompiler implementation. These results were generatedbefore the ompletion of the ompiler implementation as a feasibility study.Seond, our hand-rafted kernels at as benhmarks for the later ompiler im-plementation, and subsequent hapters will show that we do well at ful�llingthe potential of TwoStep even though the ompiler-generated kernels are verydi�erent.Our �ndings are in two ategories. First, we evaluate TwoStep andshow signi�ant speedups for the irregular appliations we seleted. Seond,we perform various sensitivity analyses in the design spae, ompare TwoStepwith some prior prefething studies, and analyze our improvements by datastruture to on�rm our intuitions. Table 5.5 highlights the small size of our93
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Figure 5.3: Improvements with an in�nite FIFOhand-rafted prefeth programs and the small footprint of loop iterations, asmeasured by the number of ahe-lines pulled in eah. Our detailed harater-ization of the previous hapters now yields a small number of distilled prefethkernels that provide substantial prefeth overage in just 1-8 loop nests withless than 100 instrutions in the TwoStep ISA, eah nest at most 3 loops deep.Measuring limit performane: We begin by measuring the performaneof TwoStep relative to the baseline. For this experiment, we on�gure TwoStepwith an in�nitely long FIFO so that the prefeth engine never has to stall towait for the main program to ath up. Pulls have a lateny of 4 yles betweenrequest from FIFO and transfer to DL1. Figure 5.3 summarizes the redutionin total yle time after simulating well-de�ned intervals of our appliationwith TwoStep enabled. TwoStep shows speedups of between 10 and 15% forour 3 irregular appliations. The regular appliation 179.art has more minorspeedups, hinting at TwoStep's limitations. We examine more appliations inChapter 7 to determine the extent of this issue, and to investigate its auses.94
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Figure 5.4: Fration of main memory aesses remainingFigure 5.4 demonstrates a seond strength of TwoStep: we show thatsuessful prefething may be aompanied by redutions in the number of a-esses to main memory. While most prefething studies at best avoid inreas-ing aggregate bandwidth requirements to main memory, the high auray ofTwoStep prefethes allows ahe-lines to turn dead after their last prefethin an interval. This ompression of live times inreases temporal loality, re-sulting in redutions in DRAM aess ounts. These initial results establishthe promise of TwoStep: aurate and well-timed prefething into the ahehierarhy for arbitrarily irregular aess patterns.Prefething e�etiveness: We now analyze the results of Figure 5.3 morelosely in order to understand the soure of our speedups. In spite of theredutions in yle ount, the number of DL1 misses is relatively una�etedby TwoStep. To gain a deeper understanding of the ritial path, we trakyles that the pipeline ommits no instrutions, assigning blame to the datastruture of the load at the head of the reorder bu�er. Figure 5.5 summarizes95
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100% false positives (always ush FIFO on store), and our results for these twoon�gurations are idential. Figure 5.9 shows that the importane of pushingdata to the DL1 varies by appliation; 181.mf and 300.twolf derive more than75% of their speedups from L2 prefeth, while in sphinx and 179.art more than75% of the speedups is derived from prefething to the Dl1. We explain theseresults in more detail in Chapter 7.5.10 SummaryIrregular appliations ontain sophistiated aess patterns. TwoStepprefethes for suh appliations by providing simple hardware mehanisms - aprefeth engine and a FIFO - that an be ontrolled by software. The hardwaremehanisms have useful properties: fewer onstraints on prefeth sheduling,resistane to DL1 pollution, and easy throttling. These improvements areahieved at the ost of some burden to software: the ompiler must statiallymap prefethes in the prefeth program to pulls in the main program, andensure that the two stay synhronized. Initial experiments with hand-raftedkernels show that it performs as expeted for irregular appliations, but notas well for relatively regular appliations. We now desribe the ompiler-side omponent of this thesis before generating results for more appliationsand identifying more rigorously the high-level harateristis that inueneappliation synergy with TwoStep.
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Chapter 6Compiler support for TwoStep
This hapter desribes and evaluates ompiler algorithms to generateuseful preomputation kernels for TwoStep. Our ompiler is strutured toonvert from C to C, outsouring bak-end optimizations to an o�-the-shelfC ompiler. It uses information from an interproedural pointer analysis, andperforms several ontext-sensitive traversals of the whole program, starting atthe beginning of main() and proessing funtion bodies everytime a all tothem is enountered.We begin by enumerating the requirements for suh a ompiler, thenuse these requirements to drive a staged tour of the ompiler as a series ofre�nements from the top down (Figure 6.1). The major hallenge in designingthe ompiler is to manage overheads due to pull instrutions in our major loops.A purely brute-fore approah that tries all possible ombinations of the majorloops is infeasible; instead we stage information from di�erent soures | looppro�les and slie densities | to perform feedbak-based baktraking in thesearh spae of loop nest ombinations. Figure 6.1 reets this bak-trakingoriented arhiteture, desribed it in detail in Setions 6.1{6.4.After the desription, we ontrast our ompiler to the major prior work102
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Figure 6.1: Overview of the TwoStep ompiler as a series of re�nements.
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        while (list) {

                ++counter;
                 leaf(list);
                 list = list−>next;
        }

        doSomething(counter);
}

                 pull;
        jeqi list, 0, exit

       addp list, list, 0, 0

        jeqi list, list, loop
exit:

void leaf (A* a) {
        a−>val = X;
}

void setList (A* list) {
        int counter = 0;
        while (list) {
                ++counter;
                 leaf(list);
                 list = list−>next;
        }

        doSomething(counter);
}

A B C

        addp list, list, next, 0

        pull;

void leaf (A* a) {
        a−>val = X;
}

void setList (A* list) {
        int counter = 0;

loop:

Figure 6.2: A simple C program (A), pull instrutions added to it (B), and theorresponding prefeth program (C). Arrows onnet prefethes in the prefethprogram with orresponding pull instrutions in the main program.in ompiling for preomputation and enumerate the major areas where pre-omputing for TwoStep presents a di�erent set of ontraints than ompilershave faed in the past. Finally, we perform a omprehensive o�ine validationof our ompiler's poliies, exploring the entire state spae for our appliationsin searh of good slies that may have been missed. This analysis provides in-sight into one limitation of preomputation-based prefething: when prefethbandwidth utilization is ritial in tight loops, it is neessary to trade o�prefeth overage for slie density. Slies that are too dense result in prefethkernels that do muh of the same work as the main proessor, reduing theprefeth thread's ability to run ahead of the main program and therefore itse�etiveness.
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6.1 Goals and requirementsFigure 6.1 illustrates the transformations TwoStep requires. Given ap-pliation C soures it must emit useful prefeth kernels in the TwoStep ISAat the L2 ontroller, and appropriately instrument the main program binaryrunning at the proessor. These twin modi�ations require mehanisms andpoliies for the following:1. Seleting loads most likely to ause pipeline stalls. We all these statiprogram loations prefeth points.2. Seleting for eah prefeth point a stith point | a loation where pre-omputation may pro�tably be started, early enough to give TwoStepthe slak neessary to run ahead, but not so early as to ause the prefethprogram to grow too bloated, or to be often led astray before the prefethpoint is reahed.3. Generating the prefeth program orresponding to all the omputationneessary to ompute the prefeth point from the stith point.4. Inserting pulls at the start of eah loop involved.For an illustration of these transformations, see Figure 6.2. This �gure shows asimple program to operate on a linked list, the plaes where the ompiler needsto insert pulls, and the orresponding prefeth program to run on TwoStep.We use this example at various points in the rest of this hapter. The ruial105



requirements for the ompiler are to generate prefeth programs shorter thanthe orresponding parts of the main program so that it runs ahead, and forthe instrumentation in the main program to be lightweight. Also, every pullexeuted by the main program must do useful work to justify its overhead; theompiler must avoid inserting pulls at loations where the prefeth program isunlikely to have data in the FIFO. In the next three setions, we desribe theproess by whih the TwoStep ompiler meets these requirements.6.2 Analyzing the appliation by loop lusterGiven the above requirements, the ompiler's ow an be deomposedat the highest level into 3 piees as shown in Figure 6.1 a): Loop seletionto identify what must be prefethed, loop lustering to maximize slak forthe prefeth kernel, and luster proessing to generate at most one prefethkernel per loop luster. Our �rst step, loop seletion, uses one piee of easily-obtainable pro�le information | loop ounts. To statially ompute the deref-erene volume: DVloop = Itersloop � StatiP trsloop (6.1)where Iters is the average number of iterations of this loop per loop entry, andStatiP trs is the path-insensitive ount of deref operations in this loop bodyexluding loops nested within it. We then sort the list of loops by DV , shortlistthe top loops that add up to 90% of total appliation DV , and ommene theseond step | loop lustering. 106
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ounter a seond we start a new luster. Leaves without an enlosingshortlisted loop at any level are disarded, sine they provide insuÆientinentive for prefething.� Eah luster ontains as many loops as possible both above the short-listed loop. Later phases may subset a luster; we give them as muh towork with as possible.� We never allow a luster to grow past a funtion boundary if it is alledin multiple ontexts in the loop tree and not all of these ontexts liewithin a luster. More preisely, we permit a loop A to be added to theluster of a subordinate loop B in a di�erent funtion f only if 99% ofiterations of loop B (from the loop pro�le) have an anestor in a luster.This ondition prevents us from adding the overhead of pulls in ontextswhere there will not be a prefeth kernel running any signi�ant fra-tion of the time. Enforing this ondition requires a seond pass afterlustering to prune bad lusters.The rest of the ompiler proesses these lusters in desending order of theirDV . DVluster =XDVloop (6.2)This ensures we prioritize our luster andidates by expeted ahemiss ount. The list of lusters an have overlap and usually does; after a108



luster is suessfully proessed no member or anestor loop an be proessedagain. This onstraint prunes some lusters and eliminates others entirelyfrom onsideration.6.3 From loop luster to prefeth kernelAs depited in Figure 6.1 b, proessing a luster onsists of aepting aluster of loops as input and emitting at most one prefeth kernel orrespond-ing to it. It onsists of three major phases | stith point seletion, kernelomputation, and ode generation | and one feedbak path to prune sues-sive outer loops from a luster if the resultant prefeth kernel is found to betoo dense relative to the main program. We now fous on the �rst and third,postponing the desription of the kernel omputation to the next setion.Stith-point seletion: Given a luster of loops, the stith point is thepoint in the program to insert stith ode to trigger the orresponding prefethkernel. Sine stith ode must trigger preisely one for every exeution of theloop luster, a good stith point has the following properties:� As a boundary-ondition initialization, it ours outside the loop lusteritself.� It dominates the luster; every exeution of the luster should have exe-uted stith-point ode.
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� It does not lie outside the loop ontaining the luster. Stith ode mustexeute every time the luster is entered.� It does not lie before a sibling loop in the loop tree. This preventstoo-early initialization as well as destrutive overlap between prefethkernels.� It does not lie before a sibling funtion all. Again, this prevents arbi-trary gaps between initialization and prefeth use. However, this on-straint does not exlude the possibility of the stith point and lusterbeing in di�erent funtions; the stith point may lie further up the allstak subjet to previous onstraints. If we span a funtion boundary,however, we must ompute a good stith point in every possible ontextof the funtion.� It ours as far before the luster as possible subjet to the previousonstraints.Figure 6.4 shows our algorithm for seleting good stith points, taking theseonstraints into aount. The individual onditions have a one-to-one orre-spondene with the above properties. We add two points to larify the reur-sive ase when moving the stith point up the all stak. First, we an learanswerStak beause we are guaranteed to �nd at least one more dominatingstatement where the stith ode may be inserted | right before the last all.Seond, the reursive all annot be passed luster itself; it must instead be110



// l is the ontext-sensitive statement list of the input programseletStithPoint(stmt, luster, answerStak):traversing s upwards from stmt in l:if s dominates luster: answerStak.push(s)if funtion all is enountered: breakif loop boundary is enountered: breakif funtion header is enounteredand there is more than one aller:lear answerStakfor every alling ontext :luster' = orrespondingContext(luster, )stith' = seletStithPoint(, luster', [℄)answerStak.push(stith')endreturn answerStakendendreturn answerStak.topend// Usage: seletStithPoint(luster, firstStmt(luster), [℄)Figure 6.4: Stith point seletion starting at a spei� statement. Takes a loopluster as input and returns a list/stak of ontext-independent statementsafter whih stith ode should be instrumented.
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a ontext-sensitive statement orresponding to the stati luster but in thesame ontext as the aller .Code generation: One a stith point is seleted and its prefeth kernelomputed and found to be not too dense, it remains only to emit the prefethkernel in terms of the TwoStep ISA. A simple one-pass ode generator suÆesfor this purpose, with simple rules for translating eah statement type in alowered C form | ontaining only ifs and gotos and no more than one binaryoperation and one assignment per statement as shown in Figure 6.5 | intosome sequene of TwoStep instrutions. Our prototype ompiler performs noregister alloation, assuming an in�nite pool of registers. It also performs nobak-end optimizations. Later in this hapter, we show that these deisions donot impat our evaluation. The only other ompliation is the book-keepingneessary to skip past empty basi bloks without perturbing the global ontrolstruture of the prefeth kernel.There are a few rare irumstanes where the ompiler is urrentlyunable to generate ode for a prefeth kernel: if the kernel ontains a all toa library routine whose body is not available to our whole-program analysis,or if it ontains a reursive funtion all. In these irumstanes we urrentlydisard the kernel. Otherwise, we insert the stith ode omputed duringsliing (desribed below) and insert pulls at the start of eah loop in theluster.
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void setList(A * list) {int ounter, __T0, __T1, __T2;{ ounter = 0;goto __L0;}{__L0:; if (list == 0) goto __L1;goto __L3;}{__L3:; __T0 = ounter + 1;ounter = __T0;__T1 = leaf(list);list = (*list).next;goto __L0;}{__L1:; __T2 = doSomething(ounter);}} Figure 6.5: Linked list traversal in lowered C form.
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6.4 Seleting a good slie for a �xed lusterWe now turn to Figure 6.1 ), the �nal omponent of the TwoStepompiler. One again, we divide up the proess of generating kernels from aloop luster and �xed stith point into three phases | prefeth point seletion,slie onstrution, and a density hek. Slies that are found to be too denseare retried after stripping an outer loop from the luster as desribed in theprevious setion. One �nal heuristi is to disard slies that ontain a loopwith a single basi blok, beause all suh tight loops serve to do is to allowthe main program to ath up with the prefeth program, without atuallyproviding any prefething bene�t. We perform this test after sliing beausein pratie suh really tight loops are often not part of the slie even if theyare within the loop luster of interest. When we enounter them in a slie webaktrak to pik a di�erent prefeth point and reompute the slie.Prefeth point seletion: The prefeth point of a luster is a pointer deref-erene to be prefethed within the innermost loop of the luster. We simplypik the �rst suh statement we �nd, heking that it annot be hoisted outof the innermost loop, and avoiding the innermost-loop indutive variable ifpossible. We rely upon later heks for slie density to baktrak and try adi�erent prefeth point if neessary.Slie omputation: Given a prefeth point and a stith point we an nowompute the bakward slie starting at the prefeth point. Figure 6.6 illus-114



trates the neessary inter-proedural transformation. The sliing algorithmonsists of starting at the prefeth point and traversing bak the interproedu-ral reahing-de�nitions as omputed by the pointer analyzer. We mark everystatement enountered in this tree traversal, utting traversal short when weattempt to move to a statement before the stith point in the ontext-sensitivestatement list of the program (statement l in Figure 6.4).One the set of statements in the slie is omputed, we an identify theset of values that need to be transferred to the TwoStep prefeth ontrollerat the stith point. We perform a bakward interproedural traversal, addingvalues on the right-hand side of statements in the slie as we enounter them,and removing values on the left-hand side. When a proedure all is enoun-tered, we rename formal parameters with all arguments and proeed. Thistraversal ontains a parsimonious list of the variables that need to be seededinto TwoStep's registers from those of the main proessor before starting theprefeth kernel for the urrent slie.Density hek: Having omputed the slie, we must now hek that itprunes enough omputation to allow the prefeth thread to run ahead of themain program. Our density metri is the fration of the statement volumebetween prefeth point and stith point that is part of the slie.SVloop = Itersloop � SliedStatiStmtsloop (6.3)SVluster =XSVloop (6.4)115



void leaf (A* a) {a->val = X ;}void setList (A* list) {int ounter = 0 ;while (list) {++ounter ;leaf (list) ;list = list->next ;}doSomething (ounter) ;}
loop:if (!list) goto exit ;list->val = X ;list = list->next ;goto loop ;exit:

Figure 6.6: A simple C program and its ontext-sensitive interproedural bak-ward slie TVloop = Itersloop � StatiStmtsloop (6.5)TVluster =XTVloop (6.6)Densityluster = SVluster=TVluster (6.7)In these equations, SliedStatiStmtsloop is the number of simple state-ments in 3-address form in one iteration of the loop that belong to the slie,and StatiStmtsloop is the total number of suh statements in this iteration.Slies with densities under a �xed threshold of 60% are retried with otherprefeth or stith points as outlined above. Our empirial reasons for seletingthis threshold are desribed in Setion 6.5.
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Summary: We have desribed the implementation of the TwoStep ompilerin detail. TwoStep transforms an appliation augmented with loop iterationount pro�les into prefeth kernels in the TwoStep ISA for the important looplusters. Parts of this workow are ommon with other sliing and preom-putation studies, while parts are neessitated by the novel TwoStep miroar-hiteture. In the rest of this hapter, we desribe a preliminary evaluation ofour ompiler omparing slies generated automatially with those generatedby hand. We then disuss in greater depth the e�et of a pull-based prefeth-ing miroarhiteture on the ompiler and how it di�ers from prior algorithmsfor automati preomputation.6.5 Evaluating the slies generated by the ompilerThis setion evaluates eah of the major poliies in our ompiler, andwe demonstrate that these poliies adequately over the state spae for ourappliations. We over in order: loop lustering, densities for di�erent lusteron�gurations (the baktraking loop in Figure 6.1 b), and �nally the e�et ofprefeth point seletion on density (loop of Figure 6.1 ). We then summarizethe vital statistis of the prefeth kernels seleted for eah of our appliations.Loop lustering: Clustering bounds the state spae for searhing for usefulprefeth kernels in later passes. Table 6.1 summarizes the usual size of thisstate spae, measured as the distribution of loops of di�erent nesting-depths inour appliations. These loop nests all ontain innermost loops in the top 90%117



#Loops ofnest depth:Appliation 1 2 3 4175.vpr 8 14 0 0179.art 0 6 2 1181.mf 0 1 1 1183.equake 0 0 3 0188.ammp 3 4 5 1256.bzip2 4 3 2 3300.twolf 7 8 0 0sphinx 3 6 0 0Table 6.1: Size of the lustering state spaeof loop volume for the appliation. Loop nest andidates within an appliationoften have overlapping outer loops; the total loop volume for these nests oftenexeeds 100%.Choosing loop lusters: Sine a prefeth kernel for one loop eliminatesoverlapping kernels in any ontaining loops, the goal is to maximize the loopvolume that is overed by kernels without drawing too muh omputationinto the kernel. The density threshold is a ruial parameter in the designof the TwoStep ompiler, and a�ets the ability of the ompiler to handledeeply-nested loops. In piking a good density threshold, we are guided bythe densities of the most deeply nested loops in our appliations, some of whihare shown in Table 6.2. In this �gure, we assume prefeth point seletion asdesribed in Setion 6.4 and study the e�et of loop nest depth on densityand on per-prefeth slie yle-time redution. For eah loop luster, we su-118



Innermost Nesting # stmts Slie density Cyle-timeloop funtion redution179.arttrain math 4 290 86% -2.5%3 288 44% 0.1%2 224 4% 0.0%1 120 3% 0.0%train math 2 224 5% 0.5%1 120 3% 0.0%181.mfrefresh potential 2 27 48% 7.9%1 22 18% 4.7%primal bea mpp 3 487 71% 0.5%2 137 42% 4.2%1 88 21% 4.0%183.equakesmvp 3 358 10% 3%2 156 4.5% 0.8%1 155 2.5% 0.8%188.ammpmm fv update nonbon 4 993 26% 0.5%3 681 26% 0.2%2 121 9% 0.2%1 28 30% 0.0%eval 3 27234 53% -16%2 27178 0% 0.0%1 27152 0% 0.0%Table 6.2: Slie densities for the di�erent on�gurations of the most interestinglusters
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while (1) {a = PICK_INT(1 , numells);aellptr = array[a℄; (1)atileptr = aellptr->tileptr ; (2)atermptr = atileptr->termsptr ; (3)for(t=atermptr; t; t=t->nextterm) { (4)ttermptr = t->termptr ; (5)...}...}Figure 6.7: Loops with lots of dependent instrutions have a small number ofpossible densities (300.twolf).essively strip the outermost loop, showing the density of the resulting slieand the speedup resulting from applying just this slie. Using this data, weexlude lusters that generate slies with a density greater than 60%. The60% threshold is aggressive and permissive; it avoids ever dropping a favor-able on�guration. While it does retain some dubious lusters with extremelylarge slies that might simply add overhead at runtime, in pratie we �nd thatthese andidates are eliminated by the ompiler anyway beause they make alibrary all the ompiler annot generate ode for.Prefeth-point seletion: Having haraterized the loop nest sizes andthe spae of lustering deisions, we now turn to the e�et of prefeth-pointseletion on seleted lusters. The majority of loop lusters have 1-4 prefethpoint andidates with widely varying densities, and deiding about them iseasy. We �nd that the loops with hundreds of prefeth point andidates break120



Cluster Nesting DV Prefeth points Common densities175.vpr I 2 31.2% 18 7.72%175.vpr II 2 20.1% 47 10%, 23%, 34%175.vpr II 1 3.2% 136 2.7%, 13.9%179.art I 4 32.1% 7 100%179.art II 2 19.7% 9 5%, 18.2%179.art III 1 2.0% 19 9.5%, 23.8%181.mf I 2 51.3% 54 75.1%181.mf II 1 51.3% 52 72.3%181.mf III 1 16.4% 12 25%, 16.7%, 8.33%183.equake I 3 67.7% 200 1.18%, 2.11%, 9.8%, 82.7%183.equake II 2 62.7% 200 4.8%, 5.6%, 48.8%188.ammp I 2 51.2% 32 0.2%, 0.1%188.ammp II 1 45.6% 3 61.5%188.ammp III 1 11.4% 3 1.25%256.bzip2 I 1 31.9% 17 34.4%, 43.8%300.twolf I 2 26.6% 7 8.3%, 9.2%, 32.4%, 93.5%300.twolf II 2 16.8% 20 0.8%, 2.8%, 6.9%, 40.3%300.twolf III 1 4.1% 30 0.6%, 2.9%sphinx I 3 83.5% 472 83.5%, 48.3%sphinx II 1 35.2% 10 5.8%, 76.1%sphinx III 1 5.1% 6 35.7%Table 6.3: Size of the prefeth-point seletion state-spae, with ommon densi-ties for di�erent prefeth-points. DV stands for dereferene volume as de�nedin Setion 6.2
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down into a small number of nested equivalene lasses beause of the preseneof low-ILP dependene hains. The presene of a loop-arried dependeneensures that inluding one of the dereferenes in an equivalene lass resultsin all the others being inluded. Figure 6.7 illustrates this pattern. Seletingany of the dereferenes in statements 1{3 as the prefeth point will inludeall 3 statements in the bakward slie. Density will thus remain the same.Seleting 4 or 5 would add both. Thus, there are only two legal densities inthis loop nest, assuming no dereferenes (ie. only omputation) in the elidedportions.Table 6.3 enumerates some of the major loop lusters that test prefeth-point seletion and the number of available prefeth point andidates | state-ments in the innermost loop of the luster that ontain pointer dereferenes |for eah. It also shows the most ommon densities for these loop lusters. Inall but one of our appliations, the largest possible density bounds the ritialpath to the last load as opposed to the omputation performed using the loadsin a loop luster. One again, our simple density threshold suessfully piksa good prefeth point for all slies, while relying on overly large slies to bepruned during ode-generation.The notable exeption to this pattern is 183.equake, where the preseneof independent loads is ommon, ausing multiple parallel dependene hainsin a loop beause of its multi-dimensional array data strutures. Figure 6.8illustrates this. Modifying the ompiler to slie for multiple prefeth pointsper luster allows us to explore the spae of all possible ombinations, but122



for (i = 0; i < nodes; i++) {next = Aindex[i℄;sum0 = A[next℄[0℄[0℄*v[i℄[0℄ + A[next℄[0℄[1℄*v[i℄[1℄+ A[next℄[0℄[2℄*v[i℄[2℄;sum1 = A[next℄[1℄[0℄*v[i℄[0℄ + A[next℄[1℄[1℄*v[i℄[1℄+ A[next℄[1℄[2℄*v[i℄[2℄;sum2 = A[next℄[2℄[0℄*v[i℄[0℄ + A[next℄[2℄[1℄*v[i℄[1℄+ A[next℄[2℄[2℄*v[i℄[2℄;...}Figure 6.8: 183.equake onsists mostly of loops with multiple dependenehains.one again we are either left with good density slies that fail to prefeth allimportant loads, or high density slies that are unable to run suÆiently farahead of the prefeth thread. We prune the latter andidates from furtheronsideration. A prefeth engine that an prefeth for multiple iterations inparallel | and so utilize all available prefeth bandwidth for independentiterations | may be able to onsider suh slies more aggressively.Compiler bak-end and prefeth kernel harateristis: Clusters andslies that �t the riteria of previous phases are now ready for ode generation.Table 6.4 summarizes some harateristis of the resultant prefeth kernels inthe TwoStep ISA for our appliations | the number of individual kernels foreah appliation, their total stati size in instrutions, and the number of regis-ters utilized. We also present orresponding data from the manually-generatedprefeth kernels of the previous hapter. As an be seen, the automatiallygenerated kernels are less parsimonious than the hand-rafted versions along123



Appliation Kernels Stati size # RegistersC H C H C R H175.vpr 5 - 100 - 77 12 -179.art 2 1 40 29 26 14 9181.mf 3 3 221 50 139 32 14183.equake 1 - 29 - 30 12 -188.ammp 4 - 514 - 355 48 -256.bzip2 2 - 120 - 87 12 -300.twolf 9 1 305 33 271 31 20sphinx 9 2 935 99 671 31 16Table 6.4: Vital statistis for the slies generated by our ompiler (C), andomparisons with the hand-rafted slies from Chapter 5 (H).eah of these dimensions:� The number of kernels goes up partly beause the ompiler is not smartenough to merge sibling lusters, and in a few ases beause it generateskernels not overed in the hand-rafted ase.� The sizes of the prefeth kernels goes up beause the ompiler performsno peephole optimizations, resulting in redundant COPY and JUMPoperations. We perform JUMP haining to eliminate empty basi bloksin the prefeth program. However, we do not eliminate JUMPs to thenext PC. We found that these peephole optimizations had no e�et onprefething e�etiveness or yle ount; the bottlenek in exeuting ourslies is memory and pull lateny rather than the number of instrutionsexeuted in the L2.� The TwoStep ompiler urrently performs no register alloation, always124



reating a new name rather than reyling free ones. The olumn Rin Table 6.4 shows the true register requirements for our appliationsafter straighforward manual register alloation. With the exeption ofone slie in 188.ammp, all our appliations require 32 registers or fewer,even though the ompiler remains oblivious to any register-apaity on-straints at this time. In prodution it will need to be enhaned to oa-sionally spill.Stith ode in the main program: One the prefeth kernels are gener-ated, the ompiler must augment the main program for two reasons: insertingstith ode to trigger di�erent prefeth kernels at stith points, and insertingpulls at the start of loop iterations being prefethed for. Compared to manualkernels the overhead due to stith instrumentation inreases for two reasons:the inreased fragmentation into prefeth kernels we alluded to above inreases,and a onservative algorithm in the ompiler that oasionally stithes vari-ables that are never used by the prefeth program. These redundant variablesalso ause some inrease in the register footprint of our prefeth kernels. Theyarise beause our implementation maintains pointer-aware reahing de�nitionsby statement rather than symboli loation in order to onserve ompile-timespae.
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6.6 Disussion: TwoStep vs prior preomputation om-pilersAs detailed in Chapter 2, preomputation-based prefething has beenstudied in several instanes of prior work [54, 76, 77℄. Most suh studies haveeither omputed slies in hardware or pursued post-ompilation binary trans-lation. Computing slies in hardware restrits the sope of individual slies,while binary translation detets only simple pointer-hasing patterns. Boththese approahes are less e�etive at addressing the more omplex interleav-ings of spatial and pointer aess that we demonstrated in Chapter 3. Thestate of the art in thorough ompiler-based preomputation is the work of Kimand Yeung [47℄. We fous on this study in our omparison.Kim and Yeung's ompiler uses 2 kinds of pro�le information | loopiteration ount pro�les and ahe miss pro�les | to selet ompute preompu-tation slies for exeution in spare hardware ontexts of a simultaneous multi-threading (SMT) proessor. The ompiler onsists of three major phases: sliegeneration, prefeth onversion, and threading sheme seletion. Slie genera-tion onsists of seleting stores to start the slie at using the ahe miss pro�le,omputing a slie bak 2 loop nests. One the slie is omputed, prefeth on-version onsists of removing stores and replaing loads with non-bloking vari-ants. Finally, threading sheme seletion onsiders two alternatives to simpleserial preexeution | doall whih speulatively updates the indutive variablefor eah iteration and runs later iterations speulatively in additional SMTthreads; and doaross whih performs a more detailed analysis of loop-arried126



dependenes to deompose loop iterations into a `bakbone' and `ribs', so thatribs may be exeuted in parallel.This sheme | whih we refer to as the SMT ompiler | has muhin ommon with our TwoStep ompiler: a dependene on loop iteration ountpro�les, pointer analysis and sliing; the ruial deision of what to prefeth orwhat load to start bakward slies at; sandboxing prefeth threads from mak-ing arhiteturally-visible hanges. There are also several points of di�erenein approah:1. The SMT and TwoStep ompilers live in very di�erent ontexts in termsof hardware budget. The SMT ompiler assumes a full proessor ISAfor prefeth threads with potentially multiple threads in ight. TwoSteponsists of a simple ontroller that is little more than a state mahine,leaving proessor resoures for other uses, and also simplifying our odegeneration.2. Using a prefeth ontroller at the L2 is also more parsimonious than pro-essor threads in terms of ahe bandwidth. Sine our prefeth ontrollersits at the L2 we only pay half the round-trip lateny and bandwidthfor eah memory aess. The redued lateny is espeially important forsequential pointer-hasing.3. The SMT ompiler uses a simpler stith-point seletion riteria than wedo | to simply stop two loop nests above the prefeth point. We explore127



more aggressive possibilities and use the post-sliing density metri de-sribed above to baktrak and prune outer loops. Our more aggressiveiterative solution shows 9% speedup for twolf as ompared to the 2%they show, a di�erene whih is signi�ant given the extra hardware andmultiple parallel prefeth threads of the SMT ompiler.4. Our pull instrutions have about the same overhead as the semaphores intheir implementation; however pulls are superior in two ways. First, thesemaphores of the SMT ompiler �x the appliation to a �xed numberof iterations, where a FIFO-based approah measures the amount ofpotential pollution more preisely allowing us to be more aggressive insome ases. Seond, using a FIFO deouples prefeth distane frompollution. Tighter loops an thus bene�t from a larger FIFO and prefethdistane without risking pollution in the DL1.5. The SMT ompiler relies on ahe-miss pro�les generated using ahesimulation. We use simple stati models instead and rely for orretionon baktraking in later phases. As a result, we are able to generatepro�les using native rather than simulated exeution. The time takenfor ahe simulation is proportional to the size of the dynami exeutionof interest; the extra time taken by baktraking depends on appliationomplexity. For appliations in the SPEC suite, the two are omparable.6. Having multiple prefeth threads in ight addresses a onern for TwoStep| sequential prefeth threads fail to use all available prefeth bandwidth.128



This an beome important in tight loops. As we show in Chapter 7,ombining a preomputation-based sheme with a history-based shemereovers a lot of the bene�t in a simpler and more modular manner.These di�erenes are largely a result of the di�erent hardware ontexts of ourrespetive studies. Given multiple parallel ontexts, Kim and Yeung fous onways to maximize their use, while TwoStep's design was driven by the desire tominimize the lateny of pointer hasing. This lateny is ruial in the patternsof serialized prefething ombining omplex sequenes of pointer-hasing andspatial o�sets in some appliations that we observed using DTrak. We nowevaluate slies of the TwoStep ompiler using several stati metris, deferringthe more omprehensive evaluation of the toolhain to the next hapter.6.7 SummaryThis onludes our desription of the TwoStep ompiler. Our detailedsurveys of the state spae that the ompiler must searh serve to validate itsdensity-based poliies. We have shown that the state spae, suitable deom-posed, is not overly large and that a relatively simple ompiler organizationserves to �nd all opportunities in the form of favorable prefeth slies. The de-tailed analysis also unovers the limitation of preomputation-based prefeth-ing responsible for 179.art's lak of speedup: that ertain kinds of loops withlots of dereferenes per iteration organized in multiple dependene hains needa favorable ompute-store ratio to be e�etively prefethed. The `tighter' the129



loop in terms of omputation, the harder it is to e�etively prefeth all of thedi�erent loads in the loop. Aside from this limitation, however, our ompilersuessfully handles a wide variety of appliations and suessfully onvergeson the right lustering and sliing deisions to ompare very favorably withmanually-generated kernels. While our manual versions have fewer stati ker-nels, often ombining multiple kernels where the ompiler annot, and unifyingloops with idential aess patterns, the ompiler is able to obtain nearly allthe speedup obtained manually.The ompiler performs whole-program analysis based on detailed pointerinformation. The more heavyweight analysis requires multiple ontext-sensitivetraversals of an appliation's soure ode, one for eah andidate slie proessedduring density measurement and ode-generation. Compiling our largest ode-bases | sphinx | urrently takes over 2 hours. Reent advanes in adaptiveon-demand ontext-sensitivity [95℄ ould be used to optimize these traversals.In the rest of this dissertation, we fous on evaluating the resulting kernels,and on identifying the strengths and weaknesses of TwoStep.
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Chapter 7Evaluating TwoStep
Having desribed the TwoStep miroarhiteture and ompiler we nowperform a detailed evaluation and haraterization of TwoStep for our ap-pliations. Our results are broadly divided into two ategories: omparisonstudies to measure the bene�t of TwoStep relative to di�erent approahes, andstate-spae explorations to better understand the strengths and weaknesses ofTwoStep. In these results, we prune from onsideration 4 appliations with lowmemory usage that TwoStep fails to improve: 165.gzip, 177.mesa, 186.rafty,and 176.g. We were unable to ompile 176.g and 197.parser beause theTwoStep ompiler runs out of memory.We begin by measuring the overage and auray of TwoStep prefeth-ing for our appliations using the methodology detailed in Setion 3.3, showingthat TwoStep suessfully prefethes for a broad spetrum of aess patterns.We then measure how this e�etiveness with aess patterns translates to ag-gregate speedups, omparing overall yle-ount redutions due to TwoStepwith two prior prefething approahes. Our results show that TwoStep'sstrengths are omplementary to prior approahes; it espeially performs wellon extremely irregular appliations suh as sphinx, 188.ammp and 300.twolf131



that other tehniques are unsuited to.The next three setions delve into the reasons for these di�ering strengths.In brief, an appliationmay be better suited to forward-looking preomputation-based prefething or bakward-looking history-based prefething. History-basedprefething relies on �nding patterns (usually spatial) in the dynami addressstream of an appliation. It is better suited to appliations with spatial lo-ality. Preomputation, on the other hand, an handle more omplex aesspatterns where the address stream does not have a reliable pattern; how-ever it requires a lot more sequential haining between prefethes to generateaurate prefethes. As a result, it requires more omputation per loop iter-ation to reliably provide improvements. We demonstrate this dihotomy �rstwith a mirobenhmark study, then with a more detailed haraterization ofprefething in real-world appliations to explore the relative strengths of regionprefething and TwoStep.The �nal setions assess the relative importane of three importantparameters of our system: DRAM lateny, the apaity of TwoStep's FIFO,and the lateny of pulls in transferring ahe-lines from FIFO to DL1. Theseresults support our hoie of baseline and show that implementing TwoStep isa realisti proposition on urrent and future hardware.7.1 The e�etiveness of TwoStep prefethingA prefeth tehnique is traditionally evaluated along two dimensions:by its auray, and by its overage. TwoStep's auray is onsistently high.132
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Figure 7.1: The auray of TwoStep prefething for our appliations.We measure auray as the fration of ahe-lines prefethed into the DL1that were used before evition. Figure 7.1 shows that this fration is uniformlyhigh aross all our appliations; 179.art exhibits the worst auray of 87%.As a result of the high auray, TwoStep prefething rarely inreases anappliation's bandwidth requirements to main memory. Indeed, as Figure 7.2shows, it sometimes redues ahe misses at the DL1 or the L2 as aurateprefethes improve temporal loality in the ahes. We now desribe this �gurein more detail as we fous on the overage of TwoStep.Evaluating overage: Figure 7.2 shows the misses remaining in the DL1and the L2 after TwoStep prefething relative to a baseline with no prefeth-ing. Redutions in DL1 misses are due to useful pulls, and we return to thesein more detail in the Setion 7.6. We separate misses in the L2 to 3 separateategories: misses that were exlusively due to prefethes (i.e. miss lateny133
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an example of a ommon ategory of simple hardware prefething inluded inmany prodution miroproessors. It prefethes the next ahe-line on an L2ahe miss, marks ahe-lines so prefethes using an extra bit, and ontinuesto prefeth ahe-lines and set their bits on the �rst use of a prefethed ahe-line. This approah allows limited lookahead and onomitant improvementfor simple spatial patterns, but fails to improve less regular appliations. Ourresults on�rm this.SRP uses the L2 prefeth ontroller to trigger spatial prefethes inan aligned 4KB region on enountering L2 misses, taking are to prioritizedemand fethes and prefethes of di�erent regions and bounding the pollutionin the L2 due to useless regions when the appliation has no spatial loality.GRP is a desendant of SRP that performs aggressive ompiler analysis toaugment important loads in the appliation with prefeth hints. The prefethontroller in GRP also performs ontent-based pointer prefething that allowsit to run ahead of the appliation by a statially bounded number of iterations.In spite of its support for various kinds of pointer-based prefething, GRP'sresults are similar to those of SRP, getting most bene�t from spatial aesspatterns but with greatly improved prefeth auray and greatly reduedmemory traÆ relative to SRP. All three sets of results use a ommon Rambusmodel. However, GRP uses di�erent ompiler and simulator infrastruture andis therefore measured against its own baseline.TwoStep outperforms GRP and SRP on the 4 most irregular applia-tions: 300.twolf, sphinx, 175.vpr and 188.ammp. Speedups are bounded by the137



memory intensiveness of the appliation; 175.vpr and 188.ammp have fairly lowmiss-rates. Another memory-intensive appliation with irregular aess pat-terns is 181.mf, and TwoStep provides signi�ant speedups that are nearlyidential to the prior tehniques. However, SRP and GRP improve 181.mfonly due to aidental spatial loality in its layout; alloation and aess followthe same path through the data struture. We believe the use of 181.mf's sim-plex algorithm in a more general graph-optimization appliation with multiplepossible paths of aess would not attain this level of spatial loality, makingTwoStep more e�etive in omparison.Figure 7.4 also highlights the areas where TwoStep is not as e�etiveas prior approahes. 179.art and 183.equake are regular appliations that SRPand GRP are able to signi�antly speed up. TwoStep also shows speedups forthem, but the speedups are not as signi�ant. This lak of improvement arisesbeause the preomputation approah fores TwoStep to serialize prefetheswhere approahes tuned for just spatial loality an issue multiple prefethesin parallel taking advantage of all available prefeth bandwidth. The e�et ofthis parallel bandwidth depends on the relative quantities of omputation permemory aess in an appliation; thus the di�erene is widest for 179.art whihspends nearly 90% of its time in extremely tight loops with 2-6 instrutionsof omputation per memory aess. 183.equake has more omputation permemory aess, onomitantly improving the e�etiveness of TwoStep. Wenow support this reasoning in a mirobenhmark study.
138



lass Objet: // Size: one ahe-lineObjet* next[4℄int x[4℄ // PaddingObjet f[OBJECTS℄ // Size: 10x L2 apaity// Eah element's next pointers// initialized randomly.Objet* urrObj = fArhetype (regularity, omputation):do 100-regularity times:do omputation times:sum = (sum + urrObj->value)%8urrObj = urrObj->next[i%4℄do regularity times:do omputation times:sum = (sum + urrObj->value)%8++urrObjFigure 7.5: The Arhetype mirobenhmark for exploring the appliation ov-erage of di�erent prefeth shemes7.3 Mirobenhmark study: The spae of appliationbehaviorThis setion presents our overage study to show that TwoStep is morebroadly-appliable than prior approahes. We desribe a simple mirobenh-mark that allows us to tune two signi�ant appliation features - the omputevs memory-aess ratio (omputation) and the fration of regular vs irregu-lar and hard-to-predit memory aesses in the dynami address stream seenby the memory hierarhy (regularity). We design our mirobenhmark to139
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yielded by di�erent prefeth shemes for di�erent values of regularity andomputation. These speedups may be summarized in the form illustrated inFigure 7.6. This graph shows speedups for 5 groups of bars orresponding todi�erent values of regularity on the x-axis, so that the set of bars at 100have perfetly spatial aess patterns while those at 0 have no spatial aess.Within eah group of bars we vary omputation, the amount of omputationper memory aess.Figure 7.6 exhibits several distint regions. First, areas with low valuesof omputation per objet (left-most bars in eah group) present little oppor-tunity for overlapping lateny and GRP (not unlike other prior shemes) failsto provide speedup. Seond, as we inrease omputation to extremely highlevels (right-most bars in eah group), Arhetype enters the spae of ompute-bound appliations. Again, speedup due to prefething is limited in this ase.Between these two extremes lie the range of values for omputation whereprefething an potentially provide speedups. SRP and GRP only improvethe regular side of this spae, gradually dereasing speedups as Arhetype a-esses memory more irregularly in the groups on the left. This result is inagreement with �ndings of the original study; limitations in prioritizing be-tween pointers and a hard limit on the slak available to the prefether are themajor bottleneks in improving irregular appliations. The major improve-ment of GRP over SRP is redued memory traÆ due to ompiler hints thatsuppress useless region prefethes.Unlike SRP and GRP, TwoStep (Figure 7.7) improves both the regular141
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to perform strided region prefething when the TwoStep preomputation en-gine is disabled. Just like in SRP, region prefethes are sheduled with lowerpriority than demand fethes or the more aurate TwoStep prefethes, andare prefethed into the LRU way of the L2 ahe without being pushed ontothe FIFO. Figure 7.8 summarizes our results, extending the omparison in Se-tion 7.2 with a new bar for our ombined prefething approah. As this Figureshows, ombining TwoStep with region prefething gives us the best of bothworlds, providing the auray of preomputation-based prefething in the ex-tremely irregular appliations that require it, and providing the bandwidthutilization of region prefething in loops too dense for the TwoStep ompilerto preompute for, and also in the rare ases of the prefeth thread fallingbehind the main thread and giving up in regular appliations.Using region prefething without the ompiler hints of GRP auses in-reased bandwidth requirements just like SRP. In priniple it should be possi-ble to add GRP's ompiler analyses and hints to the TwoStep ompiler, thoughthey are urrently implemented in separate ompiler frameworks (Sale and C-Breeze, respetively). Combining spatial prefeth with TwoStep requires goodpollution ontrol and prioritization to manage low spatial prefeth auray.This is on�rmed by experiments ombining tagged prefeth with TwoStep,whih show signi�ant onit between the two approahes and no speedupsfor irregular appliations.Having ompleted our omparison and synthesis of preomputation-and history-based prefething approahes, we now onlude our evaluation144
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Figure 7.9: How TwoStep's speedups sale with growing memory lateny.with a series of sensitivity studies to study the e�et of di�erent system pa-rameters on TwoStep's performane.7.5 E�et of main-memory lateny on prefeth e�e-tivenessAn important question when studying speedups due to prefething ishow these speedups hange as we inrease lateny to main memory. Figure 7.9answers this question. For eah appliation, the left-most bar shows the base-line RDRAM model used in the rest of this thesis, with RDRAM loked ata yle ratio of 4 relative to proessor frequeny. We model inreasing laten-ies to main memory by hanging just this yle ratio without adjusting therelative times spent by eah DRAM aess in its di�erent onstituent phases:preharge, ativation, the read/write itself, and queuing delay.Figure 7.9 shows that inreasing main-memory latenies redues the145
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Figure 7.10: How GRP's speedups sale with growing memory lateny.speedup due to prefething very slightly. For example, 300.twolf's speedup goesfrom 9.0% to 8.0% over a fator of 8 inrease in RDRAM lateny (average readlateny inreases from 92.5 to 742 yles). Over the same spae IPC drops bya fator of 4 from 0.66 to 0.15. This may seem implausible at �rst; as DRAMlatenies grow we would expet the proessor to be able to overlap less and lessof the large lateny by prefething. To explain why this is not the ase, we fouson the dependene struture of our programs. As DRAM lateny inreases, itbeomes the primary fator deiding IPC. Sine the dependene hains in anappliation are onstant as DRAM latenies grow, the number of instrutionsthat an exeute overlapping with eah dynami DRAM aess will tend tostay onstant. Similarly, any prefethes issued will start at approximately thesame instrution. Sine main memory bandwidth is likely to be relativelyhighly utilized, the limited lookahead window in the out-of-order proessormeans that as we inrease memory lateny the ratio of RDRAM aesses to146
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us the same speedups as a 1-yle lateny.Inreasing the lateny to 16 yles or more auses demand fethes tohit in the L2 before the pull arrives in the DL1. The right-most bar in Fig-ure 7.12 is thus a good indiation of the relative bene�t of TwoStep prefethingto the L2 and DL1 for our appliations. Di�erent appliations bene�t fromprefething to the DL1 to varying degrees, with memory-intensive appliationslike 181.mf and 300.twolf getting most of their bene�t from aurate prefethto the L2, while regular appliations like 179.art and 183.equake also bene�tsigni�antly from the pulls to the DL1.7.7 SummaryThis hapter presented a detailed evaluation of the entire TwoStep mi-roarhiteture and ompiler toolhain desribed in the previous two hapters.We have shown that TwoStep prefething provides yle-time redutions arossall the appliations we evaluated on relative to a baseline with no prefeth-ing. Analyzing the results further, we �nd uniformly substantial auraies,but wide variane in prefeth overage, espeially for tight loops and regu-lar programs. While irregular appliations are uniformly improved relative toGRP, regular appliations often do signi�antly better with prior approahes.We explore why and show that the need to serialize dependent prefethes isa disadvantage for TwoStep when running suh appliations. More generally,preomputation- and history-based prefething are omplementary approahesand we identify the preise appliation harateristis that determine applia-149



tion aÆnity to one or the other.
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Chapter 8Conlusions
Prefething is an attrative solution to growing memory latenies. Un-fortunately, implementing prefething well has been a hallenge for modernsystems researhers, largely beause of the wide variety of appliation behav-ior seen by modern omputer systems. Every prefething system must makedeisions on what to prefeth, when to prefeth it, and where to prefeth itto. It must make a high volume of these deisions without adding too muhoverhead. In this study we have highlighted the subtleties in making thesedeisions and the many ways that a mehanism that improves one deision forone set of appliations may degrade the quality of another deision for a di�er-ent set. One major suh tension is between history- and preomputation-basedapproahes for deiding what to prefeth. Using past history utilizes prefethbandwidth more eÆiently and makes timing deisions easier, but may yieldlow-auray prefethes for omplex irregular appliations. Using preomputa-tion guarantees aurate prefethes, but serial dependenes between prefethesworsen the problem of timing prefethes. In this dissertation we addressedthese interating problems.
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8.1 Summary of ontributionsThe major theme in this dissertation has been that the haoti be-havior of large appliations is an artifat of insuÆient analysis, and an bedeomposed into more regularly-behaved omponents. We began by deom-posing the address streams of appliations by data struture and phase, andby showing that this proess an give insight into eah appliation's behaviorand yield a symboli aess pattern for the major loops in an appliation. Asappliations grow more omplex, general-purpose proessors must be inreas-ingly proative in adapting to their hanging needs over time. Data struturesand loops are ideal high-level strutures for designers to fous on in order togain insight.DTrak, our tool for data struture deomposition, highlighted the widevariety of behaviors in modern appliations. Of the 8 appliations we studied,5 ontribute 90% of their ahe misses in just three data strutures, while theother 3 an take as many as 100 data strutures. While the phase transi-tions in our appliations our at the same points aross all data strutures,the behavior of di�erent data strutures and phases is widely variable. Ourappliations bene�t from an appliation-spei� sampling period at whih toperform phase analysis. Combining phase and data struture pro�les yieldsdistilled summaries of the dominant aess patterns in our appliations, andhighlights the �rst aess to an objet in a loop iteration as the most frequentause of ahe misses. Loop iteration footprints are tiny relative to aheapaities, allowing us to aggressively tune for these �rst objet aesses.152



We then used our understanding of these major loops to understand thedrawbaks of prior prefeth approahes, and to design a prefeth sheme thataddresses these drawbaks by orhestrating ahe-lines into the level-1 data(DL1) ahe in units of a loop iteration. TwoStep leverages modern ompilertehniques to provide the memory hierarhy with a distilled piture of theappliation's aess patterns. Prefethes originate in the level-2 (L2) ahe tominimize address traÆ and lateny between dependent prefethes. Deisionsof what to prefeth next are deoupled from when to prefeth. A FIFO betweenL2 and DL1 provides both a low-overhead ow-ontrol mehanism that allowsthe rest of the system to largely ignore the possibility of pollution, and alsoprefethes data to the DL1 right before its use. We �nd these mehanisms towork harmoniously together.The goal had been for this dissertation to provide a single set of meh-anisms that are e�etive for the large variety of aess patterns seen in thewild. From that perspetive our results have been mixed. TwoStep workswell for programs with irregular aess patterns and reasonable levels of om-putation per memory aess. While these riteria seem reasonable, �ndingbenhmarks that �t them has been diÆult, espeially when oupled withtoolhain-imposed onstraints | we require C soures and our ompiler over-heads preluded running 3 SPEC2000 benhmarks. While we suessfullyimprove irregular programs over prior work, our improvements for regular ap-pliations are lower than ompeting approahes. Understanding why this isso is one of the ontributions of this dissertation: preomputation imposes153



an ordering on prefethes and so is unable to fully utilize available prefethbandwidth. Rather than a tehnique that subsumes prior approahes, we haveended up with an understanding of the omplementary strengths of our ap-proah and prior tehniques.Prefething an either look bak at past history or look forward bypreomputing an appliation's future requirements. We have quanti�ed theomplementary advantages of these tehniques into two appliation-level prop-erties. Appliations with a low ompute-aess ratio an bene�t from history-based prefething if their aess pattern is not too irregular. Appliations withirregular aess patterns are likely to require preomputation-based prefeth-ing, as long as their ompute-aess ratio is not too low. If the reader remem-bers one fat from this dissertation, we reommend this one.TwoStep is an elaborate system requiring pro�ling, whole-programanalysis, ISA modi�ations and miroarhitetural hanges. Over the benh-marks we evaluated TwoStep over, the average improvement relative to priorapproahes like SRP is insuÆient to justify inluding the additional omplex-ity of TwoStep in a prodution design. However, I believe future trends willmake TwoStep more broadly appliable. As omputers have beome heaperand more aessible the trend in the last 30 years has been for appliations togrow more diverse (with new ategories like streaming media and personal pro-dutivity), more omplex (word proessors hek grammar and also performspeeh reognition and synthesis) and more memory-intensive. These trendsare likely to ontinue in future: the number of appliations running onur-154



rently on a system, the variety of appliations, and the variety of phase behav-iors in an appliation are all likely to inrease. Appliations that stream mediabut perform non-trivial omputations in eah iteration, suh as speeh reog-nition's beam searh, are prime andidates for preomputation-based prefeth-ing.8.2 The roads not taken: Challenges for future workWhen starting out, my goal was to explore ways in whih the hardware-software stak ould be designed to be more responsive to the needs of individ-ual appliations, and to determine the e�etiveness of this approah in reduingthe time taken to run di�erent types of appliations. Impliations of this ap-proah are that both hardware and software may need to hange, and that theinterfae between the two ould bene�t from greater rihness. In the proessof writing this dissertation I have made many hoies of avenues to pursue.While we have used the insights yielded by DTrak to improve prefething,there are many alternative appliations to these insights along three broadareas: improving stati appliation layout, improving ahe replaement, andimproving sheduling of data movement into the ahes.Improving data layout: An appliation's data layout an be improvedin two ways: either by improving heap alloators or by providing multipleaddress mappings for individual memory loations like the Impulse memoryontroller [14℄. One interesting approah to improve an appliation's data lay-155



out is to provide not one version of mallo but multiple versions tuned fordi�erent types of aess patterns, relying on ompiler support to replae allsto mallo() in the appliation with an appropriate speialization. The mostsimilar study to this in the literature is by Wilson et al. [101℄. This approahis however limited to appliations that rarely update their data strutures;appliations that update their data strutures at even a low rate end up witha random data layout if they run long enough. Appliations without updatesto the dominant data strutures will bene�t from this approah; our ompilerimplementation shows, in ombination with previous work, that determiningaess patterns statially is feasible. The open problem is translating aesspatterns into a taxonomy of alloation poliies. We didn't have aess to abroad enough range of appliations to attempt suh a taxonomy. Stati allo-ation poliies to address the most frequent aess patterns are also synergistiwith multiple address mappings to take less frequent aess patterns into a-ount.Improving ahe replaement: The seond ategory of optimizations on-sists of ways to improve ahe replaement. Cahe replaement an be im-proved either by more adaptive poliies [74, 81℄ or by more sophistiated ahepartitioning. While both approahes have been tried in the past, a promisingline of attak in either ategory is to explore in this ontext the potential of anonline system to assoiate data struture ategories with individual memoryaddresses. Creating a more oarse-grained form of DTrak analysis that an be156



performed online with low overhead ould help improve ahe bypassing anddead-blok predition deisions for either performane improvement or powerredution. A potential further re�nement is to bind spei� ahe partitions tosets of data strutures. Espeially in ombination with reon�gurable ahes,this approah may help avoid onit between data strutures.Improvements to prefething: TwoStep prefething an be improved inseveral ways. We outline three major ideas. First, TwoStep has lower speedupsthan region prefething for extremely regular appliations. We have shownthat TwoStep and SRP an be ombined without onit to get the best ofboth worlds. This solution however su�ers from the potential low auray andinreased bandwidth requirements of SRP. Combination with GRP has beenshown to be feasible, but ompiler support for suh a ombination remainsto be implemented. A seond way to address regular/spatial appliations isto use multiple prefeth threads like Kim and Yeung [47℄. In the ontext ofTwoStep, this will require the ompiler to generate multiple versions for eahprefeth kernel: one to perform the in-order pushes to the FIFO from theL2, and another in potentially multiple instanes to run ahead and prefethmultiple iterations of a loop in parallel. Third, the TwoStep ompiler ur-rently emits extremely unoptimized ode to run on the L2 ontroller. Whileour appliations have shown no bene�t from optimizing further, it is possiblethat new appliations will be able to tolerate lower ratios of omputation permemory aess with more optimized prefeth kernels. Eah of these is | in157



desending order of promise | a potential soure of future improvement toprefething for irregular and regular programs alike.Nonetheless, this dissertation has artiulated a new approah: of ex-ploring the feasibility of dynami adaptation using a riher interfae betweenhardware and software, and of using dynami adaptation to address more om-plex appliations than have heretofore been taken into onsideration in systemdesign. While the implementation an be improved, �ne-grained orhestrationand data ahe management is a valid and omplementary approah to priorapproahes that maximize prefeth bandwidth utilization.
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Appendix

The �gures in the following pages show, for eah of the major datastrutures in our appliations, the raw time-varying data every 50 millionyles for DL1 aesses, DL1 misses (L2 aesses), and L2 misses. We providean overview of these �gures, enumerating for eah appliation the dominantdata strutures in terms of total ahe misses and their aess pattern. Formore data on these data strutures, onsult Tables 3.3{3.5.159
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