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Abstract
In this paper we describe and characterize the speech

recognition process, and assess the suitability of current
microprocessors and memory systems for running speech
recognition applications. We use representative bench-
mark applications — RASTA [7] to characterize the signal-
processing on the front end, and SPHINX [13] for the
graph search on the back end. Recognition time is dom-
inated by the back end, which substantially exercises the
memory system and exhibits low levels of instruction-level
parallelism (ILP). As a result, SPHINX yields an average
instructions per cycle (IPC) of 0.64 on a simulated 4-issue
out-of-order microprocessor. We identify intelligent layout
and thread-level parallelization as the primary methods to
improve throughput, showing upper bounds on the perfor-
mance improvements that these methods can achieve.

1. Introduction

In recent years, speech recognition technology has ma-
tured from an area of pure academic research to one
with growing use in the marketplace. A variety of soft-
ware packages for speech recognition are available in the
mass market today, such as Dragon Systems’ Dragon Nat-
urally Speaking, IBM’s ViaVoice, Lernout & Hauspie’s
Voice Xpress, and Philips FreeSpeech98. Vocabularies in
commercial systems today range from 20,000 to 150,000
words. Recognition accuracies have been steadily improv-
ing as well, though current systems are still not sufficiently
accurate to easily take dictation. Coupled with improve-
ments in processor speeds and trends of ubiquitous comput-
ing, these developments promise to make speech a primary
human/machine interface in the near future. However, real-
time speech recognition requires substantial resources. Fu-
ture speech applications such as real-time translation will
demand even greater computational power. The growing
importance of this application suggests a detailed study of
its characteristics. In this paper, we describe and character-
ize the process of speech recognition, and suggest some
methods for accelerating speech recognition on general-
purpose platforms.

Speech recognition can be broadly broken down into a
signal-processing kernel on the front end and a back end
that performs a graph search on a large state space that is
quadratic in the size of the vocabulary. The front end takes
an audio signal as input and preprocesses it into a stream of
feature vectors. The back end then uses this stream to per-
form the graph search. In this paper we characterize both
the front end and the back end. To characterize the front
end, we study RASTA [7], a Mediabench [12] benchmark.
The benchmark we use for the back end is SPHINX [13],
a system for large vocabulary continuous speech recog-
nition. On a vocabulary of over 21,000 words, SPHINX
achieves speaker-independent word recognition accuracies
of 71-96%, depending on the complexity of the grammati-
cal structure in the sentences. Both benchmarks are typical
in terms of the algorithms used in modern recognition sys-
tems; SPHINX uses HMM-based algorithms that are cur-
rently prevalent [16], and RASTA processing is also widely
used [8].

In general, current desktop machines have sufficient
resources to perform dedicated large vocabulary speech
recognition in real-time. However, this performance is at-
tained at the expense of substantial memory capacity and
bandwidth requirements that are not presently available in
mobile devices. In addition, throughput-oriented server ap-
plications such as travel reservation systems provide re-
wards for further optimizing speech recognition, so as to be
able to simultaneously support multiple recognition chan-
nels. Thus, speech recognition currently presents to system
designers the twin challenges of attaining real-time perfor-
mance in the context of a resource-constrained mobile de-
vice, and of maximizing performance and resource utiliza-
tion in the context of a throughput-oriented server applica-
tion.

Our results show that current architectures are poorly
tuned to run either RASTA or SPHINX. Since RASTA
takes up only 6.7% of the total recognition time and
has a negligible memory footprint, the graph search per-
formed by SPHINX presents the real obstacle to acceler-
ating speech recognition. SPHINX has a large working
set with highly irregular control and data access patterns.
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Figure 1: The various stages in converting speech to text. Shaded
stages are studied in this paper. The first two shaded regions make
up the front end, while the final stage constitutes the back end.

Cache performance is poor, and improves only slowly as
cache sizes increase. Levels of available ILP are low. As
a result of the poor locality and ILP, we measured an IPC
of 0.64 on a simulated 4-issue microprocessor running the
Alpha ISA, with 4 KB IL1, 64 KB DL1 and 512 KB L2.
To run in real time, the minimum instruction throughput re-
quired in the Alpha ISA is 100 million instructions per sec-
ond. The bandwidth required is 156 MB/s, both between
the processor and DL1 and to main memory with an L2
capacity of 512 KB. Bandwidth required from main mem-
ory reduces to 16 MB/s with an L2 capacity of 8 MB. To
improve speech recognition performance, we show that the
memory access patterns of SPHINX have significant regu-
larity that could be exploited by prefetching strategies, re-
sulting in speedups of over 2.5, while the absence of ILP
can be compensated for by exposing thread-level paral-
lelism in the graph search, resulting in speedups of over
5.5.

The rest of this paper is organized as follows. Section 2
describes the process of speech recognition from end to
end, including the algorithms used in preprocessing as well
as the graph search. Experimental methodology and infras-
tructure is presented in Section 3. Sections 4 and 5 char-
acterize the behavior of RASTA and SPHINX respectively,
quantifying the minimal requirements for real-time perfor-
mance in each. Section 6 suggests strategies for enhancing
speech recognition performance. Section 7 summarizes re-
lated work.

2. The Process of Speech Recognition

Automatically converting speech into a textual represen-
tation requires several stages, as shown in Figure 1. First,
a microphone converts the acoustic vibrations into an ana-
log signal. This analog signal is then filtered to eliminate
the high frequency components of the signal that lie outside
the range of frequencies that the human ear can detect. The

filtered signal is then digitized using a sampling and quan-
tization phase. The digitized waveform is then partitioned
into fixed-duration time-slices called frames, which are
then compressed using one of several encoding schemes, to
yield a stream of feature vectors. At this point, preprocess-
ing is complete, and recognition techniques can be applied
to this representation of the audio input. These typically
involve a search to determine the optimal path through a
graph, and constitute by far the most time-consuming and
complex stage of the process. In the rest of this section we
describe the stages in preprocessing and recognition in the
context of RASTA and SPHINX, respectively.

2.1. Preprocessing and Feature Generation

The first two stages in Figure 1 are usually performed by
a hardware A/D converter, and are common to the process
of recording an acoustical signal to a digital format. The
preprocessor takes as input an audio file sampled at 8 kHz,
partitions the signal into frames, and encodes each frame
into a sequence of feature vectors. We study RASTA as
an example of such a preprocessor. RASTA performs per-
ceptual linear predictive (PLP) [6] processing to analyze
speech.

RASTA is structured as a loop that, in each iteration,
operates on the vector of data corresponding to a sample,
and generates a frame. Each frame is transformed from the
time domain to the frequency domain by an FFT, operated
on by a sequence of kernels, and transformed back to the
time domain using an inverse Discrete Fourier Transform
(DFT). Successive phases transform one vector into an-
other. The entire process is loop-oriented, with fixed loop
bounds. All data structures are arrays that are accessed se-
quentially. None of the inner loops have any loop-carried
dependences.

2.2. Recognition

The back end accepts a stream of frames from the front
end, and converts them to a textual representation. Much of
the difficulty in performing speech recognition stems from
the fact that a short sequence of frames may be locally in-
terpreted in many different ways. Deciding between the
various interpretations requires global analysis. The pre-
dominant technique for performing recognition is based on
a stochastic framework called the Hidden Markov Model
(HMM). An HMM is a graph of states with arcs weighted
by transition probabilities between the states, and recogni-
tion is performed by determining the most probable path
through the HMM graph corresponding to a given input se-
quence of frames. We study SPHINX as a representative
example of such a speech recognition back end.

SPHINX performs recognition with the help of a dictio-
nary broken down into four knowledge bases. The first is



a set of phone models. A phone is typically a single vowel
or consonant sound. A typical 15-word sentence is com-
posed of approximately 65 phones. A phone model for a
specific phone lists the different sequences of frames that
can represent that phone, along with probabilities for each
sequence. The second knowledge base is an acoustic model
that specifies for every pair of phones the probability of a
transition between them, across all words in the dictionary.
The third knowledge base is the language model that pro-
vides probabilities of transitions between words. Finally,
a pronunciation dictionary maps phone sequences to word
spellings. At runtime, SPHINX combines the four prob-
abilistic knowledge bases, comprising over 90 MB, into a
single large HMM graph 6.7 MB in size. The HMM is a
forest of trees, with arcs between the roots and leaves of
the various trees. Each tree represents all the words in the
dictionary that begin with a specific phone.

Recognition is now reduced to finding the highest prob-
ability path through this graph corresponding to a given in-
put sequence of frames, using a beam search. The beam
search is structured as a loop that reads in one frame in
each iteration. SPHINX maintains a list of currently active
states in the HMM graph. As each frame is read, SPHINX
propagates the arcs leaving the active states to generate the
set of active states for the next iteration and tag them with
probabilities. Low-probability candidates are eliminated in
each iteration. Thus the beam search consists of alternating
evaluate and prune phases, that access the HMM graph in
a data-dependent manner. Both these phases provide am-
ple opportunity for parallelization as individual states can
be processed independently. At the end of each sentence,
the beam search yields a set of candidate “last frames”. An
answer-builder routine then selects the candidate with the
highest probability, and retraces its path to recreate the con-
structed sentence. This process is inherently sequential.

2.3. Combining Preprocessing with Recognition

A speech recognition system needs to have both the
preprocessing and recognition phases. Between the two,
recognition is far more time-consuming; RASTA takes
only 6.7% of the total recognition time on the simulated
microprocessor. In addition, since the initialization phase
of SPHINX occurs only once and takes constant time for
a given vocabulary, in steady state its contribution to the
processing time for a single sentence is negligible, and the
recognition process is almost entirely characterized by the
beam search phase.

3. Experimental Infrastructure

This section describes the methodology used to study
speech recognition. We select RASTA and SPHINX for

Feature Baseline/Range

Out-of-order Processor
Issue/decode width 4
Int ALUs 4
FP ALUs 1
FP multipliers 1
Branch predictor Tournament, 1 KB x 1 KB local,

4 KB global, 4 KB choice

Memory Hierarchy
DL1 64 KB � 64 MB (Baseline – 64 KB)
IL1 4 KB (Larger sizes are unnecessary.)
L1 cache latency 3 cycles (1 cycle for sizes less

than 32 KB)
Unified L2 256 KB � 8 MB (Baseline – 512 KB)
L2 latency 12 cycles
TLBs 128 entries
Latency to DRAM 62 cycles
DRAM 128 MB

Table 1: Machine configurations used in sim-alpha simulations.
Wider pipeline widths and more functional units were not found
to improve performance.

this study because both use algorithms that form the ba-
sis for current research in speech recognition. In addition,
their source code is accessible to us, allowing us to corre-
late their characteristics with features of the algorithms.

RASTA takes an audio file as input and generates a fea-
ture vector stream. SPHINX takes a feature vector stream
as input and generates text. RASTA generates the feature
vectors in a format that is not compatible with the input
of SPHINX, though the two formats are comparable. Fur-
ther, the input to both corresponds to the same text. We
run SPHINX for 12 sentences in all experiments except
when we vary the L2 cache sizes, when we perform func-
tional and cache simulation for 4 sentences to warm up
the caches and then perform timing simulation for 3 sen-
tences. When running RASTA, we perform RASTA filter-
ing with a simple logarithmic bandpass filter. In particular,
the JaH-RASTA filtering method, specified in the Media-
bench benchmark suite and constituting an extra phase in
the front end, was not performed.

For the majority of our simulations we use the sim-alpha
simulator [4], an extension of the SimpleScalar tool set [3].
This simulator has been validated against an Alpha 21264-
based DS-10L workstation, including the memory hierar-
chy. We use this simulator to study fine-grained microar-
chitectural details within the processor pipeline. Table 1
describes the machine configurations used in our experi-
ments. The sim-alpha simulator does not model the op-
erating system; all system calls take zero cycles. In or-
der to model coarse-grained system-level effects we use
SimOS-PPC [18], a port of SimOS [9, 17] for the PowerPC
platform developed at IBM’s Austin Research Laboratory.



SimOS-PPC performs full-system simulation, including
the application, OS and all peripheral hardware. However,
microarchitectural details are not modeled – SimOS-PPC
performs only functional simulation of the processor. We
use SimOS-PPC to measure the overhead due to the OS,
and to examine the dynamic behavior of the various levels
of the memory hierarchy and correlate it with the source
code. Since we do not use SimOS-PPC to study details of
the microarchitecture, differences in the ISAs do not sub-
stantially influence the results. Our results regarding OS
overhead are specific to AIX, but are unlikely to be sub-
stantially different for other variants of Unix. SimOS-PPC
uses the same memory parameters as sim-alpha, as given in
Table 1.

4. The Front-end: RASTA

RASTA’s characteristics are summarized in Table 2.
RASTA is an extremely regular, loop-oriented program
with a small working set. Processing 12 sentences on the
baseline configuration in sim-alpha results in an IPC of
0.59. This IPC is sufficient to process speech in 3% of real-
time, and 6.7% of the total speech recognition time when
considering RASTA and SPHINX together. RASTA is
compute-intensive and performs both integer and floating-
point addition, multiplication and division. All data struc-
tures are easily accomodated in our simulated memory hi-
erarchy. Each input vector has 160 floating-point values
(640 bytes), corresponding to 20 ms of speech sampled at
8 kHz, with a floating-point value for each sample. The in-
termediate vectors are not large. The FFT of each frame is
a vector of 128 elements. Internal vectors beyond this step
contain 17 elements (68 bytes). The size of these vectors is
again dependent on the sampling frequency. The elements
of this vector are then transformed in parallel through the
stages until the linear predictor equation, which is solved to
yield 12 coefficients. During initialization 2 KB of mem-
ory is allocated on the heap for various data structures, after
which 516 bytes are allocated and freed each iteration dur-
ing the FFT. The source code reveals that this periodic allo-
cation is not essential, permitting the number of frames to
be changed at runtime. Thus, RASTA has a small working
set and memory footprint. The bulk of the recognition time
is spent in the graph search phase, which we study next.

5. The Back-end: SPHINX

On modern desktop systems SPHINX processes sen-
tences at a rate greater than real-time; native execution on
an Alpha DS-10L workstation processes sentences in 35%
of the typical time taken to say them. SPHINX stresses
memory system substantially, the baseline system yielding
an IPC of 0.64. Table 2 summarizes the characteristics of
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Figure 2: Kernel-mode instruction counts. Shaded regions denote
execution of the answer-builder function. The end of this function
coincides with sentence boundaries.

SPHINX when processing 12 sentences, and compares the
behavior of the baseline machine configuration with that of
several SPEC2000 benchmarks run for the first 500 mil-
lion instructions. In the course of execution, SPHINX has
a maximum memory footprint of 110 MB, most of which
is used only during initialization to create the HMM graph.
On the Alpha ISA, SPHINX needs an instruction through-
put of at least 100 million instructions per second for real-
time recognition rates with currently achievable accuracies.

SPHINX performs both integer and floating-point addi-
tion, multiplication and division. However, floating-point
operations constitute only 5% of the instructions executed
in steady state. The stream of feature vector inputs to
SPHINX are floating-point values, and floating-point com-
putation is required only to convert these to integers. The
HMM graph has no floating-point data, so the rest of the
beam search consists of only integer operations. Multi-
plication and division instructions, both for integer and
floating-point, constitute less than 0.6% of the instructions
executed in steady state, suggesting that hardware multipli-
ers and dividers would be under-utilized.

Branches constitute 14% of instructions executed in
steady state; on average 1 in 7 instructions is a branch.
On sim-alpha, we measured a branch misprediction rate of
10%. The high misprediction rate is due to data-dependent
branches in both the evaluate and prune phases of the beam
search. In the evaluate phase, these branches arise because
computing the score of each HMM involves obtaining the
best score among all the nodes in the HMM. In the prune
phase these branches arise when comparing the scores to a
global best score and deciding on the nodes to prune.

Overhead due to the operating system is negligible. Ex-
periments on SimOS-PPC show that, with a memory capac-
ity of 128 MB, kernel and user level instructions executed



RASTA SPHINX gcc gzip vpr mesa art equake eon twolf

Execution aggregates
Instructions ( ����� ) 2.4 16.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Cycles ( ��� � ) 4.0 25.4 0.7 0.4 0.6 0.7 1.0 0.7 0.7 0.7
IPC 0.6 0.6 0.7 1.3 0.8 0.8 0.5 0.8 0.8 0.8

Instruction mixes (%)
Loads 26.6 23.9 14.8 22.7 18.2 10.2 21.5 20.1 18.3 9.8
Stores 6.9 6.4 7.3 7.1 8.6 6.1 9.6 4.0 25.9 9.1
Branches 8.8 14.3 13.4 10.8 15.4 14.3 4.4 12.0 14.3 14.0
Integer ops 42.2 50.5 63.1 59.3 47.5 47.7 39.9 34.8 25.6 59.3
FP ops 10.4 4.8 0.1 0.0 10.4 21.5 24.6 29.1 15.8 7.8

Branch misprediction rates = predictor hits / predictor updates (%)
5.3 9.4 9.6 11.3 7.2 3.6 10.5 3.4 9.7 4.1

Cache and TLB miss rates (%)
DL1 0.5 15.8 2.5 7.9 2.2 0.6 32.7 0.1 0.1 0.6
IL1 3.4 3.2 14.7 10.1 17.3 19.3 0.1 15.4 16.1 16.7
L2 1.9 41.9 4.4 32.9 3.1 0.8 71.7 0.5 0.1 1.4
DTLB 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 2: Summary of SPHINX’s characteristics, and comparison with several SPEC2000 benchmarks
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Figure 3: Miss-rate vs DL1 Capacity.

have an average ratio of 1:15. Figure 2 shows the time-
dependent behavior of kernel-mode instructions while pro-
cessing the last 7 of 12 sentences. Each point on the graph
is a sample of 16.7 million cycles. The shaded regions de-
note the times of execution of the answer-builder function.
The end of this function corresponds to a sentence bound-
ary. The primary maxima in this graph correspond to the
answer-builder function. From our analysis of disk activ-
ity, we determine that most of the OS activity during exe-
cution is due to paging. SPHINX alone is responsible for
the strain on the memory system. On a larger configuration
with 256 MB of main memory, paging is eliminated.

5.1. Memory System Behavior

SPHINX needs a larger cache capacity than any of the

SPEC benchmarks. Memory operations constitute 32%
of instructions executed in steady state; 25% of instruc-
tions executed are loads. Stores occur only when updating
the dynamic HMM data structures during the beam search,
when updating scores of the active states, and when prun-
ing. The large working set of SPHINX causes substantial
traffic to main memory. In steady state, SPHINX requires
a minimum of 156 MB/s from the entire hierarchy to pro-
cess sentences in real-time. On the memory hierarchy of
the baseline machine configuration, the bandwidth required
from the baseline 512 KB L2 to main memory is 161 MB/s.
With an L2 capacity of 8 MB, the bandwidth required from
L2 to main memory reduces to 16 MB/s.

Figure 3 plots the miss rates for a range of cache sizes.
The baseline DL1 capacity is 64 KB. A 2 MB cache has
a miss rate of 3.5%. This large working set is a result
of the data structures used in SPHINX. During initializa-
tion SPHINX processes the four knowledge bases to form
a more compact representation of the HMM graph. The
main data structures used by SPHINX can be divided into
two categories. The first category consists of data struc-
tures occupying 7.2 MB that are traversed in a regular pat-
tern while processing each frame. However, fewer than 1%
of these structures are accessed in any single frame. These
data structures consist mainly of the input data structures
to the HMM graph, and the back-pointer table that keeps
track of the path taken by each of the active states. This
path is retraced to recreate the sentence during the answer-
builder function. Thus, even though these data structures
are accessed regularly, the accesses are spaced sufficiently
far apart for the data to be evicted from the cache in the
interim. The second category constitutes 6.7 MB and con-
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Figure 4: Dynamic IL1 misses.
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Figure 5: Dynamic DL1 misses.

sists of the static and dynamic HMM graph data structures.
The access pattern here is extremely irregular and data-
dependent, as states of the graph are activated and deacti-
vated. Of these accesses, 98% go to half of the 6.7 MB.
We examine the distribution of access patterns of nodes
within the HMM graph in more detail in Section 6, when
we examine the opportunity to improve spatial locality in
SPHINX.

SPHINX has a small code footprint; the baseline level-
1 instruction cache capacity of 4KB shows a miss rate of
0.2%. Figure 4 shows the time dependent instruction cache
performance of SPHINX, in a manner similar to the behav-
ior of kernel-mode instructions. The maxima correspond
to the exit of the answer-builder function. These are at-
tributed to the initialization SPHINX performs at the start
of each sentence, before diving into the innermost loop.
The secondary spikes correspond to the start of this func-
tion. This figure shows that SPHINX goes through 2 phases
in the course of processing a sentence: the beam search and
the answer-builder. The instruction caches are turned over
at each phase boundary. Figure 5 shows the dynamic per-
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Figure 6: L2 Miss Rate vs Capacity, with a constant 64 KB DL1

L1 blk size � 16 32 64 128 256 512
L2 blk size �

DL1 miss rate
1024 0.23 0.18 0.15 0.13 0.12 0.11

L2 miss rate
32 0.39 - - - - -
64 0.34 0.39 - - - -
128 0.30 0.36 0.40 - - -
256 0.28 0.32 0.36 0.35 - -
512 0.26 0.29 0.32 0.32 0.35 -
1024 0.25 0.27 0.29 0.29 0.30 0.32

Table 3: Sensitivity of cache miss rates with block size. DL1 and
L2 capacities remain constant at 64 KB and 512 KB, respectively.

formance of the data cache when running SPHINX. Once
again, the maxima of the graph correspond to the answer-
builder function phase boundary. The baseline cache size
of 64 KB has a miss rate of 15.8%. Note that Figure 3
already shows the variation in miss rate with DL1 capac-
ity. Figure 6 shows the variation in the L2 miss rate with
capacity, with the DL1 at a constant 64 KB, when simulat-
ing SPHINX for 3 sentences after fast-forwarding through
4 sentences to prime the caches.

Finally, the sensitivity of miss rate to L1 and L2 block-
sizes is summarized in Table 3. This table shows L2 block-
sizes in the rows, and L1 block-sizes in the columns. The
first half of this table shows the variation in DL1 miss rate
with DL1 block size (DL1 miss rate is constant across all
L2 configurations), while the second half shows the varia-
tion in L2 miss rate with DL1 and L2 block size. Increasing
each of the DL1 and L2 block sizes causes the correspond-
ing miss rate to decrease. This is due to the sequence in
which the nodes of the dynamic HMM graph are allocated.
In the next section we show that changing the layout of the
HMM graph in memory can systematically exploit this spa-
tial locality to improve cache miss rates and performance.
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Figure 7: One of the trees in the HMM graph used in SPHINX.
Each node is annotated with the number of times it was accessed
while processing a sentence. The language model provides links
from leaf nodes to roots of other trees.

6. Accelerating Speech Recognition

In this section we suggest strategies to enhance speech
recognition performance. Since graph search dominates
the total recognition time, we focus on SPHINX. The pri-
mary barriers to performance are the bandwidth in the
memory hierarchy, and the absence of ILP. We address the
bandwidth requirements by suggesting layout schemes to
improve cache performance. Since the low ILP is an arti-
fact of the sequential programming model used, we address
it by exposing thread-level parallelism to the hardware.

6.1. Locality

When we eliminate all but compulsory cache misses by
means of a large single-cycle cache, we find that IPC in-
creases from 0.64 to 1.65, a speedup of over 2.5 compared
to the baseline. This speedup presents an opportunity for
improving performance by making the caches more effec-
tive. A study of the access patterns of the various nodes
in the HMM graph shows that the distribution of accesses
is anything but uniform. The HMM graph consists of a
forest of trees. Each tree compactly represents all words
that begin with a specific phone, and every descending path
through a tree corresponds to a word, beginning with the
phone at the root and ending at a leaf node. Transition
probabilities between leaves and roots of the various trees
complete the graph.

Figure 7 shows one of the 690 trees in SPHINX’s HMM
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Figure 8: A profile of the number of active states in SPHINX.

graph. Each node in this example has been annotated with
the number of times it was accessed in the course of pro-
cessing a single sentence. As can be seen, the number of
accesses drops off steeply with increasing tree depth. This
pattern holds true for all subtrees. Currently SPHINX uses
a partial depth-first order in creating the graph — the words
in the dictionary are inserted into the graph in alphabetical
order. Thus each word on insertion forms a path from a
root to a leaf. Nodes in the tree are laid out near their chil-
dren rather than their siblings. However, the access pat-
terns show that locality would be improved by allocating
the nodes in memory in breadth-first order, thereby keep-
ing siblings on common cache blocks. This strategy would
also make hardware prefetching schemes more effective.

6.2. Parallelization

To increase the IPC of SPHINX beyond sequential
bounds we need to compensate for the absence of ILP by
exposing more thread-level parallelism to the hardware.
As described in Section 2, the graph search in SPHINX
consists of alternating evaluation and prune phases. Both
operate on the list of currently active states, and each of
these states can be processed independently and in paral-
lel. However, several dependencies need to be enforced
by barrier synchronization. First, the next frame cannot
be operated upon until the current frame has been entirely
processed, as the active states for the next frame are only
known at the end of the current one. Second, the eval-
uate and prune phases need to be executed in sequence.
Third, several algorithmic dependencies exist within the
prune phase. Finally, the answer-builder at the end of each
sentence is entirely sequential.

Figure 8 shows the variation in the number of currently
active states as SPHINX processes a single sentence. Since
these states can be processed independently, they may be
considered to be candidate threads, and are indicative of the
potential thread-level parallelism in SPHINX. The number



of active states varies over a wide range, decreasing almost
to zero several times before increasing again, indicating
that the speech recognition process is relatively more cer-
tain of the correct path in those place. The number of active
states increases or decreases gradually, making it possible
for an adaptive platform to allocate and deallocate compu-
tational resources to speech recognition dynamically.

Most of the time in the beam search is spent within loops
that iterate over the array of currently active states. Itera-
tions of these loops can be executed in parallel. To deter-
mine a realistic upper-bound on the parallelism available in
SPHINX, we instrument sim-alpha to time individual iter-
ations in these loops, and overlap the timings for all itera-
tions so that only the longest iteration contributes to the run
time. Iterations of these loops take a mean of 204.5 cycles
to execute. However, the distribution of iteration durations
has a small number of outliers that take much longer to
execute; the mode of the distribution is only 125 cycles.
The serial parts, i.e. the parts of the beam search outside
of loops, make up 21% of the total sequential execution
time in steady state. Since the individual iterations are ex-
tremely lightweight, speedup is limited only by the serial
parts. Thus, the upper bound on the speedup due to thread-
level parallelism in this scheme is 4.71. In practice, by
overlapping all iterations of each loop, while respecting the
algorithmic dependencies between loops, we measured a
mean speedup of 3.55, for a speedup of over 5.5 compared
to the baseline. Overheads due to thread creation, synchro-
nization and increased bandwidth requirements were not
taken into account in this estimation.

7. Related Work

Several surveys of the state of the art in speech recogni-
tion may be found in the literature of recent years [2, 11,
14]. Speech recognition algorithms may be broadly bro-
ken up into three categories: statistical, knowledge-based
and neural approaches. In recent years the statistical class
of algorithms seems to give much better results than the
other kinds [19]. The algorithms in this class have certain
common features. They’re all based on HMMs. HMMs
are associated hierarchically with phones, words and word
sequences. Recognition is reduced to the process of de-
termining the probability that a given input corresponds to
some word sequence. In theory this process could be re-
peated for all possible word sequences. The various algo-
rithms proposed differ in the features they extract from the
input and the way the language model is trained. Hybrid
Neural/HMM approaches have been recently proposed [5],
but these use neural networks to generate the transition
probabilities for the network. The actual decoding process
at recognition time remains the same.

Several authors have suggested methods to speed up

speech recognition. Hon surveyed several approaches to
implement speech recognition in hardware [10], including
AT&T’s Graph Search and ASPEN Tree Machines, SRI-
Berkeley’s Speech search machine, and CMU’s PLUS ar-
chitecture. These machines are all custom-designed paral-
lel architectures specialized for graph or tree searching, al-
beit for older technologies and smaller vocabularies. Anan-
tharaman and Bisiani [1] describe two custom pipelined
architectures for the beam search in a speech recognition
algorithm. Our study of the potential parallelization of
SPHINX is orthogonal to these studies, in that we measure
the available degree of parallelization in the beam search
and possible speedups over sequential execution.

In the case of the parallelization of the beam search into
threads, particularly relevant is a study conducted by Rav-
ishankar [15]. This study implemented a multithreaded
version of the beam search algorithm used in SPHINX,
that statically partitions the data structures between a fixed
number of threads, with no dynamic load-balancing. This
implementation shows speedups of up to 3.85 for 5 threads.
Each thread runs for the entire duration of the beam search,
and the threads have 5 barriers per iteration. However, the
algorithm of SPHINX it refers to differs substantially from
the later release of SPHINX-II used in this study. They re-
fer to an extra phase in the beam search (in addition to eval-
uate and prune), taking 50% of the runtime during sequen-
tial execution, that computes a set of acoustic scores for
the entire HMM graph for each frame. The later version of
SPHINX that we have used in this study moves this phase
out of the graph search phase, doing the equivalent work
during initialization and the answer-builder function.

8. Conclusion

The increasingly widespread use of speech recognition
applications makes these important benchmarks to consider
in designing future microprocessors and computer systems.
In this paper we study the process of speech recognition
from end to end by examining representative benchmarks
for the front end (RASTA) and the back end (SPHINX).

We find that RASTA and SPHINX exhibit different be-
havior. RASTA is a compute-intensive, loop-oriented DSP
kernel with a small memory footprint and regular accesses
over small arrays. Only 6.7% of the recognition time is
spent in the front end, with SPHINX accounting for the
rest. SPHINX is a memory-bound data-dependent applica-
tion with a graph search at its core. It has a miss rate of
2.5% over a 2 MB DL1 cache and a branch misprediction
rate of 10%. The strain on the memory system and ILP re-
sult in an IPC of 0.64 on the baseline configuration. IPC
improves to 1.0 when the L2 is increased from 512 KB to
4 MB.

To attain real-time speech recognition, SPHINX requires



an instruction throughput of 100 million instructions per
second on the Alpha ISA. An 8 MB L2 cache causes a min-
imum of 16.7 MB/s of traffic to main memory. SPHINX
runs in real-time on desktops and servers. Speech recog-
nition performance may be improved by laying out the
HMM graph in breadth-first order in memory to improve
spatial locality, and parallelizing the graph search. Run-
ning SPHINX with a perfect memory system yields an IPC
of 1.65, while a scheme for partitioning SPHINX into rel-
atively fine-grained threads, without taking thread-related
overhead and increased bandwidth requirements into ac-
count, yields an IPC of 3.55.
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