
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on serv-
ers or to redistribute to lists, requires prior specific permission and/or a fee.
OOPSLA 2010, October 15-18, 2010, Reno, Nevada, USA.
Copyright © 2010 ACM 978-1-60558-332-7/09/10…$10.00.

 Jenny Quillien
New Mexico University at Highlands

 Santa Fe, New Mexico
jenny@jqsolutions.org

Dave West
New Mexico University at Highlands

 Las Vegas, New Mexico
profwest@fastmail.fm

Rubber Ducks, Nightmares, and Unsaturated Predicates:
Proto-Scientific Schemata Are Good For Agile

Abstract

Fine-grain case studies of scientific inquiry, lessons from
linguistics on metaphoric thinking, the epistemology
of Charles Sanders Peirce, recent work on architectural
image-schemata, along with the computer world’s own
theorist, Peter Naur, all suggest that software developers
(frequently dulled and desiccated from overdosing on

‘Cartesian’ methodologies) could benefit from imbibing
a little mysticism―not the wave-your-hands woo-woo
kind but the more ineffable hunch and gut side of human
cognition. Scholarly publications in their final polished
forms rarely admit that stories, jokes, eroticism, and dreams
were the fertile seeds that germinated into ‘serious’ results.
This essay looks to these ‘closet’ sources, non-reductionist,
non-self conscious, metaphorical, and aformal modes of
thought as the salvation of a profession gone awry. It is
notably proto-scientific image-schemata that retain our
attention as a pragmatic tool for improving the fecundity of
Agile methodology, at its roots, so to speak. The necessary
context is provided by Peter Naur’s fundamental insights
about software development as ‘theory building’ coupled
with an elaboration of the Agile concept of storytelling.

The discussion starts with and, for reasons of length, mainly
stays with architecture’s Christopher Alexander who
offers novel usages of image-schemata and whose older
foundational work will be at least somewhat familiar. The
reasoning laid out in the essay, however, is general enough
to allow the reader to experiment with proto-scientific clues
from any source, not just Alexander.

ACM Categories: K. Computing Milieu, K.7 The Computing
Profession, K.7.0 General

General Terms: Design; Human Factors; Theory.

Keywords: Agile; Alexander; theory-building; stories.

1. How We Screwed Up

About fifteen years ago, Ward Cunningham introduced a few
colleagues to Alexander’s The Timeless Way of Building and
A Pattern Language. Then Richard Gabriel, James Coplein,
Kent Beck and the soon-to-be authors (Johnson, Vlissides,
Gamma and Helm) of Design Patterns joined Cunningham
to form the Hillside Group. Hillside, in turn, drove the
early patterns movement and associated conferences and
publications.

Although ‘patterns’ became a staple in the developer’s diet,
few remember an even earlier Alexandrian influence. Notes
on the Synthesis of Form, Alexander’s doctoral dissertation,
attempted to rigorously define and quantize a ‘science’
of design. Cited during the 1968 NATO Conference on
Software, Notes was to be an exemplar, adopted and adapted
for software development. Current notions of software
engineering and structured development derive from that
conference, directly reflecting Alexander’s ideas―but only
some of them―and the distinction is crucial.

All of Alexander’s writings have a dual nature:

(a) An attempt to understand the forces used by Nature to
craft living systems, in other words, a focus on the world or
the domain, expressed in rather mystical terms:
 •The non-self conscious process
 •QWAN, The Quality Without A Name
 •Timeless Building
 •Transcending the Pattern Language Gate
 •Wholeness
 •God

(b) A parallel attempt to define pragmatic elements that
humans can use to achieve a similar end―a focus on
implementation, expressed as concrete design directives:
 •A calculus of design
 •Resolution of forces
 •Patterns
 •Geometric Properties

The software community, uncomfortable with the
metaphysical/mystical dimension of Alexander, tended
to discretely whisk under the carpet the more mysterious
phenomenological mother load, leaving the ‘theater of their
minds’ feeling ‘cleaner,’ almost antiseptic, more brightly
lit, with only a sparse cast of arid characters. It would be
a ‘good thing’—nay, a ‘necessary thing,’ for us to take on
board the full spectrum of perspectives as we ponder the
possible contributions of Alexander’s latest and still little
known publication, The Nature of Order.

To profit (handsomely, we project) from Alexander’s
contributions (old and new), we need to consider them
along with comparable ones from elsewhere, specifically:
architect Bill Hillier’s work on pathways and intelligibil-
ity, historian of science Gerald Holton’s thoughts on nascent
reflections, linguist M.L. Johnson’s classic treatise on bodily
knowledge, and, most importantly, our own subliminal
intuitions. We need a revitalized understanding of what
software development is really about.

2. So, What Should We Be Doing?

Peter Naur challenged the mainstream view of software
development as a kind of ‘production process’ where
programs and documentation constitute ‘the deliverable.’
Naur’s alternative formulation, Programming as Theory
Building, saw true development as the collective attainment
of insights (a Theory) about the problems at hand and how
they are addressed by the execution of the program.

“An affair of the world and how the
program handles and supports it.”

The explicit inclusion of ‘an affair of the world’ and the
emphasis on program ‘behavior’ as that which contributes
to the problem solution, are critical departures from
mainstream thinking. Both directly counter the prevailing
idea that what matters in software is what goes on inside of
the machine and not what is happening in the enveloping
system.

Just how revolutionary Naur’s ideas were can be appreciated
by contrasting them with those of another computer science
legend—Fred Brooks. For Brooks, author of the iconic
piece No Silver Bullet, the essential difficulty confronting
programmers was the inability to form a conceptual
construct. Although there are some superficial similarities
between Naur’s Theory and Brooks’ conceptual construct,
they are semantically poles apart.

A conceptual construct is a model of how the program
executes: i.e., flow of control, data structures, and
algorithms―the step-by-step changes of state within a finite
state machine. A Theory, in contrast, incorporates both what
happens outside the computer and the conceptual construct.

The outer boundary of a conceptual construct is a set of
requirements for what the computer is supposed to do.
Development, therefore, has been concerned with ‘building
to specification’ and making the process more formal and

‘provable.’ But. . .
“Where do the specifications come from?”

“Why these requirements?”

“What is the relationship between these specifications and
the real world needs they supposedly reflect?”

“Does an ambiguously stated expectation lose anything
essential when straight jacketed by formal precision?”

. . .These questions are vital if we are to have a robust Theory
à la Naur.

Naur explicitly pierces the requirements boundary and
asserts that ‘affairs of the world’ are primary concerns and
what goes on inside of the machine is secondary. In fact,
he really says that what happens inside of the machine is
essentially irrelevant: it is the behavior of the executing
program that determines the ‘correctness’ of the software.
Indeed, it is quite possible to have provably correct software,
that meets every requirement and yet fails to deliver the
appropriate behavior.

Let’s take an easy and commonly experienced example
facing the authors at this moment: some of the specifications
for Microsoft Word (which we are using to compose
the original draft of this essay) include various types of
auto-formatting, e.g., first letter capitalization and bullet
point margins. Neither of us has ever used Word without
experiencing a conflict between what we wanted to do and
what Word wanted to do for us. The software performs
correctly but the behavior of that ‘correct’ program is
incorrect, annoying, and counter to supporting the ‘affair of
the world,’ at hand which is to efficiently help us construct a
conference essay. Word fails and it fails because the Theory
behind it is impoverished, not allowing for instantiations of
diverse particulars but only a rather dim-witted single end-
user reminiscent of Joe The Plumber.

Agile owes a significant debt to Naur’s ideas about theory
building and kudos go to Alistair Cockburn for saying
so. Common Agile values (simplicity, communication,
feedback) and practices (pair-programming, collective
code ownership, whole team, metaphor, on-site customer)
directly support the creation of the kind of Theory that Naur
advocates―but if and only if they are correctly interpreted
and implemented. The caveat suggests that Agile, like
Alexander, has suffered lopsided interpretation, with the
formal getting more press than the aformal.

3. Telling Tales

Naur’s Theory Building depends on crafting and relating
stories. Storytelling, since time began, has been the mainstay
of mankind when it comes to making collective sense of life,
teaching, entertaining, and acculturating newcomers. And no
wonder. Stories are effective, powerful, easily remembered,
high bandwidth tools whose force resides in their primarily
evocative nature. Even the simplest story, operating like a
vacation snapshot, will bring to mind a dense association of
other stories, circumstances, and knowledge.

Theories, à la Naur, are developed when a community tells
stories about ‘affairs of the world.’

what the world is like,
how it might be better if, and

I bet we could get a computer to help us with that.

The Theory continues in its development with stories about,
we need the computer to behave like this, or

here’s how the computer will actually do it, and
here’s how we’d know that the computer was doing that.

Theory is confirmed and Agile ratified with stories about
it works,

that really helps, and
here’s another idea.

4. Agile Flunks Story Telling

One of the great tragedies of Agile is inadequate practitioner
understanding and mastery of stories and metaphor.
(Metaphor was essentially abandoned when Kent Beck
removed it as an explicit practice.) Let’s face it, User Stories
(Agile’s single most important practice supporting Theory
Building) have devolved into being nothing but verbose
expressions of a ‘specification.’

”As a user I expect the system to allow
me to login using an id and password.”

“As a security manager I expect the system
to incinerate anyone that incorrectly enters

an id-password combination four times.”

Those are not stories. A ‘good’ story, at minimum, means a
full cast of characters, a plot, a description of interactions
among the characters to advance the plot, cues, and
outcomes. Consider how Robert Louis Stevenson, as he
writes a letter to his Meredith, manages all aspects of ‘story’
in just three sentences.

Robert Louis Stevenson’s Battlefield

“For fourteen years I have not had a day’s real health;
I have wakened sick and gone to bed weary; and I

have done my work unflinchingly. I have written in
bed and written out of it, written in hemorrhages,
written in sickness, written torn by coughing, written
when my head swam for weakness; and for so long, it
seems to me I have won my wager and recovered my
glove. . . I was made for a contest, and the Powers
have so willed that my battlefield should be this dingy,
inglorious one of the bed and the physic bottle.”

The devolution of stories leaves us stuck with our old
practices and diminishes our ability to directly link the
enterprise with information technology systems that could
really support it. It’s more than a crying shame. Properly
put to use, stories and Theory Building can bridge business
practices like ‘scenario-based planning,’ and ‘play scripts,’
with software design. This same understanding would
provide a sound foundation for emerging efforts in ‘design
thinking’ and ‘user experience design.’

To be fair, the full dunce cap isn’t warranted. Obviously,
we have developed some facility for telling stories about
what happens inside the machine. Martin Fowler’s Analysis
Patterns starts to address specific domains. Works such as
Eric Evan’s Domain-Driven Development provide meta-
patterns for telling stories about those ‘affairs of the world’
that we expect to handle with software. But, if we are weak
when it comes to telling stories about the domain, we are
shockingly weak when it comes to crafting stories at the
boundary. Object stories and user stories rarely reflect the
nature of the embedding system.

5. A Sojourn in Story Space
Stories are “equipment for living.”

S. I. Hayakawa

The relationship between Theory and the stories of different
genres and perspectives that comprise it is shown in
Figure 1 on the following page. We see that stories make
a transition from ‘valid’ (containing elements of truth but
requiring interpretation) to ‘reliable’ (specific descriptions
that produce consistent results when repeated).

Along the continuum, the story pane is partitioned, using a
Venn type diagram, into three realms: ‘affairs of the world,’
transitional, and ‘how the software handles or supports.’

The main types of stories are as follows (and we could
elaborate by including additional story types such as
heuristics or scenario planning).

MYTHS tend to be global in scope or to focus on epic events
and individuals. Every organization tells itself stories about
the organization as a whole and what it does.

Figure 1. Story Space

D
O
M
A
 I
N

C
O
M
P
O
N
E
N
T

Myth

VALID
 BUT REQUIRING INTERPRETATION

RELIABLE
 REPEATABLE RESULTS

Formal

METAPHOR ALGORITHM

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

__
__

Stories about how the
software handles the
‘affairs of the world‛
Implementation Patterns

Design Patterns

- -
 -
- -

 -
- -

 -
- -

 -
- -

 -
- -

 -
- -

 -
- -

 -
- -

 -
- -

 -
- -

 -
- -

 -
- -

 -
- -

 -
- -

 -
- -

 -
- -

 -
- -

 -
- -

 -
- -

 -
- -

 -
- -

 -
- -

 -
- -

 -
- -

 -
- -

 -
- -

 -
- -

 -

METIS
Proto-Scientific
Schemata

Stories about
 ‘affairs of the world‛
Domain patterns

Objects

User
Stories

TECHNE

Village Ingenuity

In the canton next to Geneva, which since time
immemorial has made Swiss cheese, a small village
specialized in also making the cheesecloth used
in the aging process. The little town was isolated
with many families dependent on this local craft
for their livelihood. When their handmade product
became obsolete, the families banded together and
experimented with other outputs for their looms and
know-how. Fabrics for furniture ran into too much
competition but they persevered, eventually finding
a niche in airplane seats covers which must be of
incredible durability. Although successful at this
stage, more learning was ahead. The founding family,
faithful to their home town, eventually sold the
company to the employees, who are now branching
out to redesign the airplane seat itself, replacing the
heavier frames with air cushions (covered of course
with village-made fabrics) potentially saving airlines
significant fuel cost. Collective loyalty to community
and place, courage and deep craft knowledge of
technique and material has allowed the village to
successfully navigate the changing times.

Mythic stories might take the form of mission statements―
valid, but subject to a lot of interpretation. Or, they might
relate an event that solidified an organizational value.

Rubber Ducks

Cray Research held an annual event, Ducky Days,
grounded in a story about their corporate values.
Their first building in Minnesota had a fountain and
one day a yellow rubber duck appeared, serenely
floating about. A rather uptight, imported from
outside, manager promptly issued a memo banning
ducks as unbefitting the decorum of the company.
Next day the fountain was overflowing with rubber
ducks. The responsible manager soon departed.

Or, they speak of heroic individuals personifying values.

Walking the Talk

IBM values a culture of innovation and prudent risk
taking. A senior VP was responsible for a significant
loss. Watson was being interviewed and the topic of
the VP and the loss came up. “Will you fire Mr. X?”
Watson was asked. The response: “Hell no, I just paid
for his education!”

All stories act as tropes or paradigms permanently on call
to revitalize listeners and their predicaments. Stories travel.
Stories support subtler modes of thought. Stories are the
developer’s life raft.

PROTO-SCIENTIFIC IMAGE-SCHEMATA (PSIS) help a story
retain a global point of view while adding explanations
about observed characteristics. [Does the reader remember
Just So Stories?] PSIS are invaluable in improving domain
stories and we will, in a later section, use them extensively
in our case study of insurance companies.

Hard-wired in our deep structures of cognition are Gestalt
categories, natural contents and lines of cleavage of
experience: categories of shape, number, size, movement,
constancy, continuity, and succession. At the conscious
level we verbalizable perceptions of change and organize
events into discontinuous chunks―like the ticks on a clock.
In this conscious mode our field of attention is constructed.
Underneath, however, is an un-verbalized flow of sensing
and hunches in a diffused field of attention. Motility,
intention, direction, kinetic centering and balance are sorts
of non-conscious knowledge that are key to our making
judgments through time and space, both real and imagined,
from parallel parking our car to programming.

It is at this level that we can tap into the insights from other
fields. Take the linguist M.L. Johnson who explored how
our metaphors of path, blockage and enablement are rooted
in our bodily knowledge of movement and impediment, and
how our metaphors of compulsion and restraint removal are
built around our kinetic understanding of force or pressure.
(Using such metaphors to inform our ideas about proper
Web-site navigation, organization, and inter-activity is an
obvious possibility.)

Historians of science, such as Jacob Bronowski or Gerald
Holton, go to great lengths to point out that the popular
dichotomy between the ‘rule of reason’ and ‘mystical
conviction’ is naïve and wrong-headed.

“Form is core rising to the surface.”
Victor Hugo

Indeed, Mr. Hugo

Researcher, Otto Loewi, taking his dreams seriously,
found that they told him how to design his experiment
which unpacked his hunch that nervous impulses were
substantially chemical rather than purely electrical in
nature.

Elias Howe’s design of the sewing machine came
to him during a nightmare of being captured by
cannibals, each with a spear with a hole in the tip.

Kekulé’s discovered the circular benzene structure
through dreams of Ourobos biting its tail.

Holton’s detailed study of unpublished notes, letters,
reminiscences, and conversations led him to a list of
schemata which drive exploratory quests in science without
necessarily being explicitly at issue in the research. Included
in his list are: atomicity versus continuum, evolution versus
devolution, simplicity versus complexity, hierarchy versus
unity, constancy versus evolution versus catastrophic
change, and the explanatory efficacy of mathematics versus
mechanical models.

From architectural schemata we expect Hillier’s work on
space syntax and Alexander’s image schemata (referred to
as ‘geometric properties’ in The Nature of Order) to provide
useful trail heads for systems story telling. Alexander
offers essentially static structural schemata while Hillier
recognizes how a world’s underlying spatial grammar,
particularly pathways versus ‘fat’ nodes (where we hang
out), and degrees of accessibility and blockages, guide
actions and understandings which lead, in turn, to policy
and design decisions.

Our ultimate goal in software design is to create a ‘virtuality’
in which we can ‘live,’ not one that just establishes formally
correct artifacts. If we employ the metaphor of a map,
Alexander helps us with the layout of places, while Hillier
helps us figure out how to navigate with ease. Notice though,
that, Alexander-Hillier maps, and the stories told about
them, cannot do more than tell us about our Theory of the
world at a specific time―an important limitation. Important
and problematic because stories contextualize and constrain
later stories.

Why Are We Still Doing This?

When we first theorized about airplane navigation
we told stories about VORs and moving in straight
lines from one VOR to another. Our air traffic control
systems implemented this theory and despite the fact
that our understanding of the world has changed to
incorporate GPS, Great Circle routes, and computer
assisted navigation, airlines still fly point-to-point,
VOR-to-VOR zigzag routes with attendant congestion
above each VOR. So we need be aware when telling
Alexandrian stories about centers (a key ‘property’)
that we don’t find ourselves drawn into centralized IT
systems that we don’t really want.

USER STORIES bridge the ‘affairs of the world’ and software
implementation. Specific and idiosyncratic rather than
generic, this story type should remain ambiguous as long as
possible, permitting novel interpretations to surface.

User stories detail the interactions among agents (some
will be manifestations of executing computer code) as they
collaborate on a discrete piece of work. They establish a unit

of work―and a unit of Theory―with each story depicting a
discrete ‘affairs of the world.’

As a ‘unit of work,’ a User Story bounds an activity with
three inter-related parts or aspects: 1) expanding the domain
Theory and clarifying it through emerging contextualization
as one story informs the next, 2) deciding (highly subject to
change) what behaviors can and should be embodied in a
software-driven artifact, and 3) making the initial decisions
that will shape the conceptual construct.

The Product Backlog, along with the emerging executing
software, comprise a gestalt comprehensive Theory. Stories,
we would argue, should never be removed from the Product
Backlog but simply be changed in some visual way to indicate
that they are ‘conjecture,’ ‘developing,’ or ‘confirmed.’ In
this way the Backlog provides both an overview of the state
of the project while evoking the current Theory.

A User Story artifact, a story card for example, is but a
placeholder for the conversation that disambiguates those
affairs and limns the means by which the software will
eventually ‘handle and support.’

OBJECTS are actors in User Story plays, anthropomor-
phized individual system elements engaged in productive
activity. The object metaphor assures decomposition of the
most complicated domain and the most equitable, simplest,
distribution of workload across all domain elements.

Object stories are user stories from the point of view of the
character—i.e., “when I (an object) found myself in this
situation I did this.” Object stories don’t tell us anything
about how the character was able to do what was done but
they do provide clues as to how software objects might be
implemented. From the stories we can discern:

•what that object needs to know and how he came to know it
•how object behaviors are invoked, and
•the nature of each discrete action expected of the object.

Object stories also preserve the verisimilitude between
objects and their software implementations―a major
requirement if we are to realize enterprise-software
integration and integrity.

PATTERNS, as stories, are actually found across the entire
transition zone, depending on whether they are stories
about consistent program implementation (Design Patterns)
or domain patterns (Analysis Patterns). Patterns tend to
abstract similarities and codify structures for subsets of the
domain. Patterns can deal with organizational structures
and with structured interactions. They might be conceptual
patterns or very low-level coding patterns. Kent Beck’s Best
Smalltalk Practice Patterns and the Programming Pearls
books tell pattern stories right down to variable name.

In the software community we often think of patterns as
another syntax, but in story telling we’re pointing to a much
wider human ability to think about motifs, such as Joseph
Campbell who reduces all hero journeys down to the skeletal

‘pattern’ of ‘the hero’s journey.’

FORMAL STORIES, such as data structures and algorithms, are,
at least in principle, provably correct. X may equal Y but
both are semantically empty. The proof aspect is of interest
to theoretical computer scientists but most consumers of
those stories only care about the fact that they consistently
deliver expected results. Formal stories describe computer
operations that are the actual mechanism behind how objects
do what it is that they do.

6. Contextualization: Every Story Has Baggage

Bitter, with baggage, seeks same
Personal Ad, Santa Fe Reporter

Stories are nested, semantically contextualized, by all the
stories to their left on the continuum defined in Figure One,
and related to peer stories by virtue of a shared context.

Context provides the basis for consistency and for transition
from simply valid stories to reliable stories. Context,
reinforced by feedback from the emerging software,
reinforces the plausibility of the developing Theory.

There is a subtly strong determinism in the way context
shapes the telling of nested stories. Two examples:

Don’t Provoke the Gods

Imagine a South Sea island blessed with blue lagoons
and handsome people who pray to jealous gods
who resent mere mortals taking their stuff, like fish
from the sea and trees from the forest. This divine
resentment leads to occasional ‘punishment’ in the
form of hurricanes or volcanic eruptions. (Although
at this writing we may have it wrong about the
island’s location being in the South Seas. It could be
Iceland and an irate god is using a local volcano to
shut down air travel.)

Such myths will shape various South Sea rituals concerned
with daily activities (building a house, for example) that
include appropriate rites for propitiating the gods. In turn,
within the context of these rites, specific practices evolve
(using stilts for house support and curing logs before they
are used).

A Myth Under Our Own Bed

Need the readers of this essay ‘imagine’ our own
cultural myths about heroic CEO’s who steer their

organizations by virtue of their near omniscience
and flawless application of scientific management in
a capitalist world unfettered by puny governments?
(Think Ayn Rand.) This kind of myth leads to ritual
behaviors, such as the development and deployment
of monolithic integrated systems that put corporate
information and controls in one place as an instrument
to be played by such godlike figures. Embedded in
such rituals are specific practices, such as offering the
CEO appeasements in the form of obscene salaries
and private planes and adopting formal procedures
like RUP and formal models like UML. (A volunteer,
perhaps, for writing up relationships between Tim
Geithner, the Federal Reserve, and Goldman Sachs
as a case in point? Or how about crafting the mythic
story of Too Big to Fail according omnipotence
beyond civil constraint. And does the reader
recognize that Alexander’s quaint stories about non
self-consciousness in the African builder (who sees
spirits in the mud bricks of his hut) apply just as well
to our own goings-on?)

The business practices that end up being adopted because
of their mythic influence (and the results that accrue
from their use) have the effect of putting the enterprise
in a technological straight jacket of ossified structure and
infrastructure. Clearly we need better myths predicated on
more perspicacious thinking and improved construction of
stories that are derived from such myths. We need abductive
and metis-ical thinking.

7. Metis versus Techne

So, clearly there is a qualitative difference in the kind of
thinking, reasoning, and story telling required to develop
domain stories as opposed to implementation stories.

Domain, Object and User Stories require what we will call
metis-ical thinking (we’re bad at it) and those about the
machine and its innards require techne-ical thinking (we’ve
got it down).

Metis (as a noun and from the French métier meaning
profession, trade or craft) is a form of logic and ‘thick’
knowledge that is contextual, particular, and fine-grained:
the kind of knowledge that can be acquired only by constant
adaptation to changing circumstances and long practice at
similar but rarely identical tasks (our Swiss village weavers,
for example). Such ‘thick’ knowledge can only be acquired
when teams are constantly exposed to the full complexity
of task, materials, customers, and context. Perceptive
innovations and productive adaptations are absolutely
dependent on the kind of wisdom, experience, and ‘thick’
knowledge provided by metis.

Metis incorporates the kind of inference that Charles Sanders
Peirce named ‘abductive.’ Peirce posited that no new idea
could result from the mere application of deductive or
inductive reasoning, but rather, new ideas come into being
by way of “leaps of the mind” using “inferences to the
best explanation,” in much the way that our familiar hero,
Sherlock Holmes, unravels his mysteries. (If the butler did it,
then all our collected but disparate clues fall into place.)

The bulk of software development literature and education
concentrates, however, on techne, ‘thin’ reductionist forms
of logic and knowledge that aim to be universal ways
(math for instance) to render complexity more simple and

‘legible.’ Our currently ‘thin’ modes of teaching attempt to
pre-codify everything in a vain attempt to protect the learner
from surprise (and thereby also buffered from instructive
disappointment), whereas a thicker apprenticeship system
would aim for the opposite, teaching the learner to expect and
embrace surprise and be attentive to subtle but meaningful
differences. Theory, as conceived by Naur, is metis-ical first
and techn(e)-ical only when absolutely necessary. We also
need to re-cast many of our user stories and object stories in

a more metis-tical light so that they foreshadow but do not
unnecessarily constrain technical solutions.

Metis-ical thinking and abductive reasoning are essential for
dealing with the world outside the computer, for it is in this
world that we encounter ‘wicked problems’ not resolvable
with mere logic and inductive or deductive reasoning.

Apple’s Conundrum

Apple needs a business model which both guarantees
a quality user experience and maximizes market share
through third party contributions to the functionality
of the platform (basically, lots of applications.)
There are unknowns in the equation plus conflicts
between the forces that have to be resolved. In order
to control the quality of user experience Apple wants
to limit applications to three languages (C++ which
is obsolete, Objective C which little used, and Java
Script which is popular but lacks respect). What
happens as a result of that decision? Out the door go
potential contributors who, rather than becoming loyal
supporters, are alienated by a perceived arrogance on
the part of Apple. Should these potential contributors
decamp and head for another platform (say Google)
then Apple loses market share.

Wicked problems elude known categories and approaches.
Any attempt at devising a solution to a wicked problem
changes your understanding; any solution changes both the
problem and your thinking. Moreover, there is no clear rule
for knowing when you have ‘solved’ the problem or what
parameters the solution might exhibit.

Perhaps if experienced craftsmen (think metis-ical) at Apple
increased the scope of their thinking to include the larger
system in which their products are being used, they might by

“leaps of the mind” intuit different kinds of decomposition,
redefine the nature of application and platform, and make
the choice of language irrelevant.

8. Thangkas and Other Tricks of the Trade

Remembering and sharing (even depicting) a plethora
of stories is less intimidating than it sounds. In fact, the
way the human mind is put together, we have no problem
storing thousands of stories in memory, recalling them to
mind when presented with appropriate triggers. Just think
of all you know about your culture, your world-view, your
profession, your business, your family, in story form.

That said, hundreds of stories are never ‘in residence’ in our
heads at any given time. We need access to the stories, and
we need some kind of meta-knowledge about the stories
and how they are all inter-related. We also need some kind

 from Representation and the War for Reality
by William Gass

“But the war for reality is not to be won or lost in
the quarrels between historians and scientists or
fictionists and philosophers, because each discipline
has its thick and its think side, its solid terms, and their
invisible relations. There must be data; there must be
observations; there must be facts, incidents, events, the
Thick side says, while the Thin reminds us that there
also must be order, structure, analysis and argument, no
philosophy; without arrangement and connection, no
history; and without rhetoric, without patterns, without
coherence, there is only the ordinary novel.

The war for reality is therefore a struggle between data
and design, brute dumb fact and indifferent chance; and
then ironically, there appears the thinnish impulse to
introduce the laws of probability into this rubbish heap,
and to publish, shortly, a careful catalogue of trash. If
design wins the data are deformed, the system runs ahead
of the load it was carrying, and there is a multiplication
of artificial entities and metaphysical myths. Thins
really wonder whether facts aren’t entirely the creation
of abstract schemes, like the golf courses, lakes, and
tree-lined streets of desert real estate developers; and
Thicks tend to think that concepts carve continuities
into discrete chunks, that laws are lies of some system
of society, some secrete legislature illegally elected.”

Figure 2. Thick versus Thin

of ‘index’ to the stories so we can quickly find and use the
one(s) of immediate interest.

The strategy of archiving or stockpiling stories, however,
is a slippery slope, as any good librarian will tell you.
You have to know a lot before you can begin to retrieve
additional information and without it the information is as
good as gone. Rather than a storage model, let us bank on
the fact that stories are not frozen but change with time and
the intentionality of the teller. [If a six year old tells how he
fell in love with his first grade teacher, it is one story. If that
same individual at sixty revisits the story, it is something
else entirely.]

It is possible to compactly and visually represent a vast
collection of continually unfolding stories. On the wall
above the desk where the authors are working is a Buddhist
Wheel of Life Thangka Painting. Around a hundred discrete
images on this painting appear there, each capable of
recalling stories. The images are arranged in particular ways
which recall yet more stories. The overall gestalt brings to
mind still more stories.

Agile workrooms employ similar (but less organized) visual
artifacts for a similar reason—to create a kind of external
memory with evocation-based retrieval. Big visible charts,
information radiators, white boards, post-it notes, and story
cards are artifacts that are deliberately placed on common
walls so that everyone can simply look up, find the relevant

Figure 3. The Thanka Over Dave’s Desk

‘trigger artifact,’ and recall to mind the story(ies) they need
for their immediate work. Less visible but playing the same
role are tests, test suites, and the totality of the source code
for the software (collective code ownership).

While the markers, acting as cues or clues, exist in the
artifacts of our environment, the Theory, as Naur insists,
exists only in the heads of those that participated in its
construction and ongoing elaboration. If you break up a
team, and the environment full of artifacts (a sort of external
hard drive), the Theory itself is broken up and over time
dissipates entirely.

Central to our argument is the realization that a proper
Theory is comprehensive; i.e. it is comprised of all the
stories. A necessary corollary is that there can be but one
Theory, the Theory of the enterprise and the world in which
it operates.

This assertion is in stark contrast to the situation in most
organizations today where, at minimum, two contrasting
theories compete; one of the business system and another
of the IT system. (Thus preventing the long sought goal
of business-IT integration.) In the worst case, there are
multiple, episodic, ephemeral, idiosyncratic, and unrelated
theories of discrete projects.

Everyone in the enterprise must share the same Theory,
even if they understand some stories in more detail than
others. When everyone shares the same Theory, and when
the evocative artifacts are no longer isolated in an Agile
team room but distributed across every bulletin board,
logo, intranet, and corporate report, then, but only then, the
enterprise will realize two significant benefits. One, there
will always be a sufficient mass of theory-containing- minds
to assure the preservation of knowledge and enculturation
of newcomers. Two, the foundation will be laid to realize
enterprise goals of adaptability and innovation.

9. Alexander’s Schemata in The Nature of Order
(or Alexander Ponders God)

Earlier, experienced story-tellers like Beck, Wirfs-Brock
and Gabriel looked to Alexander as a potentially rich source
of new metaphor and new idiom. Unfortunately, others, like
the Gang of Four (Design Patterns) and The Three Amigos
(UML), saw only a new form in which to express old ideas,
thereby throwing out a lot of that proverbial baby with the
bath water.

Our quest now will be to show how The Nature of Order,
which carries forward much of the mystical and domain
focused questions of Alexander’s earlier works, can help us
tell better stories.

Alexander’s magnum opus runs a hefty 2000 pages divided
into four volumes, only the first two are pertinent to our
discussion here.

Volume One presents fifteen image-schemata (labeled
‘geometric properties’) which, Alexander argues, are
always present in natural artifacts made by Mother Nature
(God, if you will). The presence of these same ‘properties’
universally characterizes successful man-made artifacts
while their absence indicates failed design. (Figure 4 offers
but one example.) It is Alexander’s expectation that further
research will provide mathematical proof of these properties,
moving his insights away from loose qualifiers and more
squarely within a ‘scientific’ discussion of, quite literally,
the nature of order. However, a different and more modest
interpretation is taken here: we limit ourselves to using these
properties as convenient proto-scientific schemata of human
perception―which in the epistemology of Charles Sanders
Peirce are unsaturated predicates or rhemic iconic qualifiers.
Peirce’s idea of ‘rheme’ or ‘unsaturated predicate’ refers to
our attention being on only one aspect of our experience.
When, for example, we chip off a piece of old painted plaster
or brush some red paint on a piece of wood or cardboard to
take to the hardware store in order to purchase a matching
color, we aren’t concerned with the size, shape, or cost of
the plaster, wood or cardboard, but only the ‘redness’ or

‘blueness’ of the color. ‘Rhemic iconic qualifiers’ are useful
shorthand expressions for talking about a variety of related
experiences (hence the expression ‘unsaturated predicates’).
Think of ‘elasticity’ as a rheme, i.e., a way of talking about
how different materials act when we work with them or

‘gravity’ as our experience of various falling objects or, for
that matter, our own bodies as we slip on ice or climb stairs.
Alexander’s ‘echoes,’ (one of the ‘properties’) for example,
allow us to speak about an experience of unity across a range
of natural and man-made objects, city skylines, bluegrass
music, sibling resemblances, or Shaker furniture. Coupling
and Cohesions are examples of rhemes or unsaturated
predicates that have been found to ‘echo’ across natural and
man-made objects, including software objects.

Image-schemata offer ways of observing, knowing,
communicating, and inventing. The risk, ever-present and
ever so easy, is to reify these ‘rhemes’ into reductionist or
operational recipes—a job they are ill suited to do.

Volume Two, the last to be published and, in significant
ways, the least complete, adds the dimension of time to the
initial static presentation of the fifteen properties given in
Volume One. The properties are explored in the second tome
as transformations, i.e., the actual mechanisms of living
systems as they unfold over time. A video, for example, of
a developing human fetus shows growth through increasing
differentiation: parts increase in contrast, growth is through
local symmetries at different levels of scale, both individual

Figure 4. Good Shape in Chairs and Decomposition.
Objects with Alexandrian Good Shape are usually
composed of smaller elements themselves of Good
Shape, often convex.

Bad Shape

Good Shape

cells and proto-organs develop boundaries or transition
zones. Simultaneously we see that no center, be it heart,
lungs, or pinky finger, will be isolated, but rather there
is not-separateness. [Each of the words in italics is one
of the fifteen properties.] At any point in the evolution of
fetus, the fetus is whole unto itself, as is the born child who
continues on to adulthood. Then, Alexander points out that
a parallel process of differentiation and increased density
of overlapping centers can be observed in the unfolding of
successful buildings and towns. Alexander does not offer
design instructions as to the order in which the properties
should be conjured forth as inspiration. Rather it is the
understanding or vision of the whole which guides the
process. In Enterprise Domains we find something of a
parallel. Paul Hawkins in Growing a Business speaks
eloquently for the need of deep rooted knowledge and
intuitive understanding of a business as a ‘whole’ if that
business is going to continually learn, survive, and ‘unfold’
well. The failure rate and short life span in business speaks
to the difficultly of such ‘thick’ domain knowledge.

10. What Every Schoolboy Knows. . .

Before we delve into domain stories (our Agile weakness)
and how Alexandrian image-schemata (our illustrative
example) can spur good thinking, four preliminary comments
may provide a useful entry into the subject matter.

First, we want to underscore how ‘un-Cartesian’ the fifteen
schemata really are, and, in that sense, helpful in shaking
programmers out of their doldrums and habitual ruts.
Alexander’s properties are more in tune with what phenom-
enologists call lived space, i.e., that day-to-day unexpressed
and somewhat inexpressible sense of space that we all have
as we orient ourselves from our source―our bodies―into
the surrounding environment. User experience designers are
grappling with exactly this kind of problem. Roughness (one
of the fifteen properties), for example, honors the relaxation
and disclosure of the full range of bodily sense and posture―
fluid, not completely open, but not that narrow. Designers of
all stripes want a brief, a project charter, with exactly this
kind of roughness. Other properties, good shape, positive
space, contrast, boundaries, gradients, clearly make more
lived space sense than the razor thin A/not A categories from
our geometry lessons. Alexandrian space reveals a rich field-
like structure rather than space which is empty, transparent,
unstructured and isotropic. Alexander would subscribe to
the following quote from Newton’s Latin version of Optics,
Query 20 (for Newton, too, had his moments of metaphysical
wonder), “Annon spatium universuum, sensorium est entis
incorporei, viventis, et intelligentis?” (Is not infinite space
the sensorium of a being incorporeal, living and intelligent?)
[Newton removed the phrase from the English version
when he was in a knock-down-drag-out-fight with Leibniz,
perhaps not wanting to appear as too mystical.]

As a second point, we need to make a special kind of
spatial translation of Alexander’s schemata. We need to
think of ‘space’ as something else even though we use
spatial metaphors (balance of power, span of control) when
describing the enterprise domain. Several candidates come
to mind: power, wealth, control, even market, but we will
suggest another dimension, that of behavior, as the most
appropriate candidate. For example (and an important
example) an Alexandrian center, is not a point-center of
a geometric circle but, rather, a focal zone created by the
field around it, just as we experience ‘centers of power’ or

‘centers of action,’ in an enterprise through various kinds of
behaviors.

Most of the time, in Alexander’s work, centers are discussed
in terms of two and three-dimensional space. However,
when time is introduced, there is a sense of N-dimensional
space unfolding, where the essence is preserved even as the
manifestation of that essence is transformed. For example, if
we take our story of the Swiss village and its original cottage
industry, we can imagine that the centers have evolved quite
significantly over time, but there is still continuity of an
essence that remains alive.

Figure 5. Fish eggs. Roughness is in how irregular three
dimensional objects find their place and allow other to
find their place.

Roughness in Schopenauer’s Porcupine Story

One cold night the porcupines huddled together
for warmth but pricked each other with their
quills. After they shuffled in and out for a while,
each found just the right spot for both warmth and
comfort.

Third, a few authors (Régis Medina, for one) have
looked to Alexander’s new material as a way to improve
implementation stories, and while we acknowledge these
contributions, we feel the more insightful angle, and most
certainly, the more propitious place to start, is to borrow
insights from Alexander to tell stories about the domain.

And fourth, we must tell some mythic stories about the world
as context for the Alexander inspired, domain stories.

The Universe

We believe that the universe is a system composed
of nested subsystems. We used to think that the
Universe was something like massive clockworks,
deterministic and mechanical in nature. But that
was an earlier Zeitgeist, although businesses and
management schools held on tight to that idea all the
way through the 20th century. Now we’ve moved on
to a better understanding and view the universe as
a complex, living, system with emergent behavior,
significant non-determinism, much closer to an
organism or ecology than clockworks.

Of course, most of us are not going to be concerned with
writing software for the universe or even Ultra-Large
Systems. Instead we will be focusing on specific subsystems.
And of course, some of those subsystems will be ‘formal.’
Examples of this kind of software would include operating
systems, firmware, hardware drivers, etc. When developers
deal with this kind of static system, they are best advised
to use the techniques of software engineering as is. Our
interest here, however, is in the design of [sub] systems
(and supporting software) that are not formal in nature, but
consistent with our contextualizing story of the Universe as
Complex System. The vast majority of applications software
fits into this category.

11. Excerpts from A Gecko’s Tale

In order to show how we might tell stories about a specific
domain using Alexandrian image-schemata, we will
arbitrarily pick the domain of Insurance and use the Wheel
of Life Mandala as a visualization tool.

Let’s start with the core of the Mandala—a circle that is a
center. Nestled inside are icons which act as contributing
centers. These icons represent focal ideas and gather many
stories of the primal forces involved. The act of centering
the generative engine at the spatial center of the Wheel,
draws on our primitive image-schemata to reinforce its
essence as driver/creator of all else. The Mandala is further
strengthened and defined by the boundary and its good
shape. Our initial circle-as-center will echo across the
Wheel as our work progresses.

An over arching story associated with this space is a variation
on Money Makes the World Go Round with all the primal
forces that generate the insurance domain. We can easily
create visual reminders of such forces: money (represented
by a U.S. dollar sign), people (a stick-figure icon), assets (a
bank vault icon), and risk (a tornado/cyclone icon).

Contrast reflects the categorically quite different risks such
as money, people, and assets. As centers, we expect all three
to be complex and composed of nested centers at different
levels of scale. We can tell stories about each to bring to
mind their essential nature. For example, stories of the Great
Tsunami of 2008, or The San Francisco Earthquake, or The
Great Chicago Fire, reveal the nature and the composition
of the Risk center. Similarly, we could tell stories about
costs, profits, losses, expenses, and capital to better unpack
the Money center.

The generative power of the core arises from interlocked
and ambiguously expressed interactions and inter-
relationships among the centers in that core. The interlock
is sufficiently deep and the nuances of interaction are
sufficiently ambiguous that we will never run out of stories
to be told. This is a good thing, because new stories are the
source of innovation (new products, re-designed processes,
new organizational structures) and adaptability. Think of all
the new process stories that had to be invented for on-line
purchase of policies. Or, just what is an asset?

Jennifer Lopez’s Lips Bring in Bucks

Jennifer’s lips, full, glossy, sensual, were the talk of
Hollywood after the debut of her film, Sex Kitten and
Dracula. This spurred Gecko into launching a new
insurance product line around collagen and Botox
mishaps. (We made this one up.)

Disambiguating the interactions, surfacing and removing
the deep interlocks, even if possible, does not lead to greater
understanding; it merely results in a reductionist, lowest
common denominator, cookie-cutter systems design.

Stories about the interplay among the primal movers create
the context for the other centers. In our insurance company
(a structural center), actuaries arise from stories about the
uneven distribution of risk across our customer base (people)
and how that distribution affects costs and profits. For
example, the sad saga about Sam exposes the deep interlock
between human hormones and particular kinds of assets to
define risk. Then there’s Dave, a Harley man with gray hair,
whose story exposes another different deep interlock.

He Never Reached Manhood

Sam, on his sixteenth birthday, took his piggy bank
and bought himself a 2000cc crotch rocket motorcycle

and took off for Denver. Taking his first hairpin turn
at full throttle, he missed the curve, crashed into a
boulder, and that was the end of young Sam.

 Helmetless Dave

I won’t wear a motorcycle helmet. Helmets impair
my hearing and hasten fatigue thereby increasing
the likelihood of an accident. Marginal Impact
injury prevention is replaced by a greater chance of
torque injury. And figures show that cowardly but
experienced grumpy old guys like me, sans helmet,
are at less overall risk than helmeted but reckless
teenagers.

To develop a Theory of a large and complicated domain, we
must partition the domain into more comprehensible pieces—
decomposition. Stories and objects are the metaphorical
knives we use to carve out our partitions, augmented by
an understanding of properties (especially centers and
nascent centers through boundaries, contrast, void), old
programming concepts, like coupling and cohesion, and
metaphors like behavior and homunculi.

Coupling and cohesion traditionally have been misused
‘inside out,’ as tools to aggregate computer functions and
represented data (stuff inside the machine) and not as tools
to partition the World. Here, however, we look to the kind
of user stories and objects that emerge from telling stories
about primal forces to more accurately reflect the natural
elements of a domain.

Behavior provides a criteria for decomposition that maps
to (and translates) Alexander’s spatially defined properties;
it represents Naur’s ‘executing software,’ and is a feature
common to software, human, and abstract entities in our
domain.

Behavior-based decomposition of a business enterprise
begins with the people, or more precisely, with job roles
and their attached behaviors (duties, responsibilities, and
tasks). Processes are simply ordered collections of discrete
behaviors.

In our insurance company we see behavior centers named
Agent, Underwriter, and Claims Adjuster. We need to extend
our thinking about behavior to the ‘inanimate’ elements of
the system as well. For example, what are the behaviors of a
document? Using action verbs forms, a document:

•Collects a set of pages
•Adds, deletes pages from itself
•Orders the pages in collaboration with the individual pages
•Provides a page on request
•Identifies itself
•Presents itself, also in cooperation with individual pages

Figure 6. Deep Interlock and Ambiguity in a tile
from Samarkand and the lack of this ‘property’ in
Sherlock Holmes tiles from Baker Station in the
London underground. Alexandrian deep interlock and
ambiguity is about two centers being joined by a third
which belongs ambiguously to both. A meandering
stream or coastal wetlands would be examples from
nature.

We want strong centers, and to strengthen them we now use
our old friend, cohesion. But cohesion, in this case, means
that the behaviors are appropriately aggregated from the
perspective of the domain. For example, we do not ask
actuaries to investigate claims even though they possess
information about accidents that would allow them to do
so. Centers are strengthened (cohesion is increased) when
there are boundaries, good shape, contrast, and simplicity
and inner calm.

Centers do not exist in isolation (Alexander’s not-
separateness) but are coupled to other centers. As we
know, loose coupling is preferred. A number of properties
contribute to loose coupling of centers: positive space
(which loosely couples adjoining centers, such as the
dancers in Figure 7) and void are two. [For void, think of
how a public square (void) decouples surrounding parts of a
city by offering multiple pathways among them. In contrast,
two parts of a city connected by a single bridge are tightly
coupled. In software, multiple objects connected by a single
name space (bridge) are tightly coupled, whereas the same
objects connected by a directory (a container of multiple
possible connections or, in Hillier’s lingo a ‘carrier space’)
are decoupled.]

Other properties, echoes, gradients, and alternating
repetitions, provide additional ways to couple centers, or at
least establish relationships among them. These are more
akin to the way that we organize departments or processes
as relationships among centers. We apply similar coupling
and cohesion principals here because we would like our
processes to be as adaptable and flexible as possible.
Examples would include:

• The way that Cray Research echoed both the physical layout
and the organizational structure of the small Chippewa
Falls office where Seymour Cray and two associates wrote
the Cray One operating system across their entire campus
complex in Minnesota.

•Well crafted, and addictive, games offer a challenge gradient
that can ascend as user experience and expertise increases.

•The alternating repetitions that generate the rhythms of
agile development: build (test & code), then improve
(refactor) or listen (user stories and on-site customer), then
interpret (test and code, again), or then, do (sprint), and
reflect (retrospective).

Deep interlock and ambiguity is a ‘property’ whose name
seems to suggest stronger coupling than might be desirable.
But in fact it captures the essence of another well-known
software principle―the association. (A Reservation center
resolves the deep interlock and attribute dependencies
between Room and Event centers, establishes appropriate
loose coupling, and preserves the ambiguity of ‘what event
might be in what room when’ until a concrete instance must
be scheduled.)

The astute reader will notice that Alexander’s schemata
brings us, by another route, within range of the behavioral
approach to object design à la Ward Cunningham, Kent
Beck, Rebecca Wirfs-Brock, Nancy Wilkerson, and Dave
West that was generally dismissed as informal, messy, artsy,
and hopelessly devoid of strong manly type systems.

Nor would this behavioral approach be foreign to scientific
inquiry.

Maxwell’s Demon

In a thought experiment about equilibrium in
gas pressure, Maxwell’s demon is a hypothetical
homunculus that has a behavioral obsession of
standing in the doorway connecting two compartments
in order to admit or block the passage of individual
molecules between the two chambers. The demon’s
goal? Balance out the distribution. If provided with
information about the speed of individual molecules
(and a bit of malice), Maxwell’s demon would be
able to violate the second law of thermodynamics.

Figure 7. Positive Space. ‘Goodly shaped centers will
create around them well (positive) shaped space which
units the separate centers into a larger cohesive one.
Even in movement, dancers or aikido practitioners
who are ‘centered’ in themselves will form a fluid but
continually positive space between themselves.

A final example, this time of thinking about design and
foreshadowing implementation. The properties of interest
are: levels of scale, echoes, and roughness. We will also
return to our Thangka metaphor.

The outermost circle of the Wheel of Life depicts the cycle
of life, the sequence of stages from birth to birth. The circle
itself is a sequence of segments, each segment representing a
life phase and each segment being a cycle unto itself. So the
Circle of Life is an object, specifically, an ordered collection
that consists of phases, that are themselves objects, most
often also an ordered collection.

The Wheel of Life for our insurance company is a process,
or more accurately, an ordered collection of processes
identified as: Identify Prospect
 Collect policy information
 Rate policy
 Underwrite policy
 Issue Policy
 Collect premiums
 Accept claim
 Terminate policy

Roughness comes into play when you recognize that each
of the component parts of the overall process are stronger
to the extent they are autonomous and not tightly coupled,
yet allowing the others to ‘find their place.’ The elements
themselves are diversely shaped and loosely coupled,
making it possible to completely re-organize or restructure
the entire process merely by changing components, or
the interfaces among the components. Organizations
that ruthlessly pursue total integration (à la SAP) remove
roughness and hence adaptability.

Echoing our ‘collect policy information,’ (which is an
ordered collection of processes), display data collection
forms must accept input, validate input, and submit validated
input. Similarly, the issue policy process would be a process
collection: add page, create page, add ‘boilerplate,’ add fact,
and add text string. In this example we see both echoes and
levels of scale as individual objects, such as data entry form
and policy, have the same ‘ordered collection of objects’
aspect. The form is an ordered collection of text strings
and entry fields and another, unseen, ordered collection
of validation rules. The policy is an ordered collection of
pages, and a page is an ordered collection of text strings,
glyphs, and values. A text string is an ordered collection
of characters. A validation rule is an ordered collection of
operators, constants, and variables.

12. Have You Heard The One About. . .

In our insurance example, we have used image-schemata-
inspired thinking to decompose a complicated domain

and design components that could be directly and simply
implemented as software. There is not an algorithm, data
structure, mathematical formalism, or logical argument in
sight. We have shown the potential of metis-ical thinking
and laid a foundation for developing the following corollary
insights.

The first is theoretical and speculative. One of the more
mystical ‘metis-ical topics in The Nature of Order is

‘unfolding.’ Alexander, true to his dual nature approach,
is looking to emulate the natural behavior of a seed (as it
unfolds through several stages to become a flower or tree),
to create a kind of evolutionary design of the artificial. The
behavior of the seed is grounded in the structure of its DNA
which is an ordered collection of genes, which are ordered
collections of bases. The ability of a single instance of a
seed to unfold into its ultimate form is encoded in its DNA,
so too is the variability of forms from essentially identical
instances of DNA. Variation in form comes from context—
environmental factors that replace or activating different
members of the ordered collections, such that different
unfoldings occur.

In our example of the data collection form we have something
that is metaphorically and behaviorally similar to the seed.
A form is essentially a nested set of ordered collections (à
la DNA string, gene, base). A finished, behaviorally active,
form unfolds from the operation of the elements in those
nested ordered collections. Variability of form (order form,
job application, insurance application, etc.) requires simple
addition, deletion, or substitution of elements in one or
more of the ordered collections—as to which change will
be appropriate, that will be determined by the stories that
contextualize the unfolding.

“Things are stories.”
Maurice Merleau-Ponty

Figure 8. A Form ‘Application for Loan’

Second, pragmatic benefits have also been obtained.
Adaptability is readily apparent. An enterprise (if understood
and modeled behaviorally) can change any of its processes
or any of its component objects (including translating
them from the tangible to the digital) by adding, deleting,
substituting, or re-ordering elements of its nested ordered-
collections. The property, simplicity and inner calm (a de-
cluttering of all unnecessary centers leaving the remaining
ones stronger), is also quite real. The core of the data entry
form―which is all possible forms―can be implemented in
less than 100 lines of Smalltalk code. Those hundred lines
are distributed across five objects (classes) and roughly
thirty methods, so every code statement or method is trivial
to understand.

Third, we have reinforced Agile stories and a Lean principle,
by using those stories to delay the departure from the
ambiguous (ambiguity being simply maximum possibility).

Fourth, Peter Naur’s insights and Agile’s concept of
storytelling provided the bridge to cross from familiar mind
sets to those that are strange. We have also opened the
door for consideration of other essential sources of insight.
Networks, weak links, design thinking, and complex
adaptive systems are but four such sources.

In essence, we have shown why more stories should be
told, and object and user stories recast as ambiguous and
dynamic through the use of proto-scientific schemata. And,
really, folks, stories are first and foremost, a way to improve
our sense-making skills.

The moral of our tale is that we have a choice. Machines
are sterile. Dead as dead can be. Only living systems are
fecund, intellectually productive, generative. The most
compelling enterprise need, today, is the ability to innovate,
adapt, and learn. These are characteristics of living systems,
not machines.

Software can be either dead or ‘alive’ in how it ‘handles
or supports’ and it all depends on the philosophical presup-
positions―our myths of the World―that contextualize our
Theory. We can choose.

Our profession would do well to eschew what we think we
know and diligently explore what others are learning about
living systems. Software developers could nurture their
inner artist. And, just as other kinds of artists are drawn to
the marginal, counter cultural, night life areas of a city, we
need a software development environment that is similarly
loose, permissive, and tolerant of the subliminal. We need
story telling as our primal social action where an utterance
to an audience is a transfer to the collective.

Acknowledgments

We thank André Demailly, Charles R. Adams, and Mary
West for their invaluable comments on early drafts.

13. Annotated Bibliography

Alexander, Christopher. Notes on the Synthesis of Form,
Cambridge: Harvard Paperback, 1964. Alexander’s published
Ph.D. exposes his struggle between his training in math and
logic and mystical intuitive sources of knowledge.

Alexander, Christopher. The Timeless Way of Building,
New York: OUP, 1979. The Big Picture on ‘the why’ of
architecture―which is to achieve QWAN. The Quality
Without a Name is redefined in his latest work as God.

Alexander, Christopher, Sarah Ishikawa, Murray Silverstein,
with M. Jacobson, I. Fiksdahl-King, S. Angel. A Pattern
Language, New York: OUP, 1977. The how-to book which
supplements The Timeless Way on ‘the why’ of architecture.

Alexander, Christopher. The Nature of Order, Berkeley,
California: CES, 2003-2005. Four volume magnum opus
attempting quite literally to decipher the nature of order in
the universe and how to harness its secrets.

Bronowksi, Jacob. The Visionary Eye: Essays in the Arts,
Literature, and Science, Cambridge, Massachusetts: MIT
Press, 1978. Bronowski makes the pitch that art and science
are but two compatible and mutually reinforcing sides of
man’s inquisitive mind.

Brooks, Frederick P. “No Silver Bullet: Essence and
Accidents of Software Engineering,” Computer, Vol.20,
No.4 (April 1987). As explained in the essay, he looks at the
conceptual construct behind programming.

Gabriel, Richard. Patterns of Software, Oxford University
Press, 1996. The use of patterns thinking in software.

Gass, William. Habitations of the World, Cornell University
Press, 1985. Essays on writing and source of quotes by Gass
and Robert Louis Stevenson.

Geertz, Clifford. Toward an Interpretative Theory of Culture,
New York, N.Y.: Basic Books, 1973. A collection of essays,
the first of which looks at ‘thick descriptions’ as a major
methodology in ethnography.

Hawkins, Paul. Growing A Business, New York: Simon &
Schuster, 1988. A book for entrepreneurs speaking about
how a business ‘unfolds,’ but getting the sequence of
business decisions right requires in-depth understanding
and ‘feel’ for the industry.

Hillier Bill and Hanson J. The Social Logic of Space,
Cambridge: Cambridge University Press, 1984. Basic
text on space syntax. Provides concepts such as pathways,
access, and intelligibility absent in Alexander’s work.

Holton, Gerald. The Scientific Imagination. Cambridge,
Harvard Press, 1998. Case studies of inquiry which reveal
the subliminal schemata at work.

Johnson, M.L. The Body in the Mind: The bodily basis of
meaning, imagination and reason, Chicago: University
of Chicago Press, 1987. Classic text on the role of bodily
metaphors in thought.

Medina, Régis www.regismedina.com Régis Medina of
Crossbow Labs in France keeps an interesting blog on the
using concepts from The Nature of Order in implementation
design.

Naur, Peter. “Programming as Theory Building,” Micropro-
cessing and Microprogramming, 15, (1985).

Peirce, Charles S. Values in a Universe of Chance, Selected
Writings of Charles S. Peirce, editor Philip Wiener,
Doubleday, 1958.

Quillien, Jenny. Delight’s Muse: on Christopher Alexander’s
The Nature of Order, Ames, Iowa: Culicidae Press, 2008. A
beginner’s set of cliff notes on the main themes of the four
volumes.

Quillien, Jenny. Haunted Spaces for Lesser Gods: A more
modest interpretation of Christopher Alexander’s Findings
in Book Four of The Nature of Order, paper prepared for
EDRA (Environmental Design and Research Association),
Washington D.C., June 2010. Available from the author
upon request. Paper proposes a secular explanation rather
than Alexander’s theistic one.

Scott, James. Seeing Like a State: How Certain Schemes
to Improve the Human Condition have Failed, New Haven:
Yale University Press, 1999. An account of how the State
has required legibility in order to govern and imposed ‘thin’
techne over ‘thick’ metis knowledge.

Shank, Robert. Tell Me A Story: A New Look at Real and
Artificial Memory, Chicago: Athenaeum Press, 1991. A look
at how and why stories serve human cognition so well.

