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This paper discusses modularization as a mechanism 
for improving the flexibility and comprehensibility of a 
system while allowing the shortening of its development 
time. The effectiveness of a "modularization" is 
dependent upon the criteria used in dividing the system 
into modules. A system design problem is presented and 
both a conventional and unconventional decomposition 
are described. It is shown that the unconventional 
decompositions have distinct advantages for the goals 
outlined. The criteria used in arriving at the decom- 
positions are discussed. The unconventional decomposi- 
tion, if implemented with the conventional assumption 
that a module consists of one or more subroutines, will 
be less efficient in most cases. An alternative approach 
to implementation which does not have this effect is 
sketched. 
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Introduction 

A lucid s tatement  o f  the phi losophy of  modula r  
p rogramming  can be found  in a 1970 tex tbook on the 
design of  system programs by Gouth ie r  and Pon t  [1, 
¶I0.23],  which we quote  below: 1 

A well-defined segmentation of the project effort ensures 
system modularity. Each task forms a separate, distinct program 
module. At implementation time each module and its inputs and 
outputs are well-defined, there is no confusion in the intended 
interface with other system modules. At checkout time the in- 
tegrity of the module is tested independently; there are few sche- 
duling problems in synchronizing the completion of several tasks 
before checkout can begin. Finally, the system is maintained in 
modular fashion; system errors and deficiencies can be traced to 
specific system modules, thus limiting the scope of detailed error 
searching. 

Usual ly nothing is said about  the criteria to be used 
in dividing the system into modules.  This paper  will 
discuss that  issue and, by means o f  examples, suggest 
some criteria which can be used in decompos ing  a 
system into modules.  
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A Brief Status Report 

The ma jo r  advancement  in the area o f  modula r  
p rogramming  has been the development  o f  coding 
techniques and assemblers which (l) allow one module  
to be written with little knowledge o f  the code in 
another  module,  and (2) allow modules  to be reas- 
sembled and replaced wi thout  reassembly o f  the whole 
system. This facility is extremely valuable for the 
product ion o f  large pieces o f  code, but  the systems mos t  
often used as examples o f  problem systems are highly- 
modular ized  programs and make use o f  the techniques 
ment ioned above. 

1 Reprinted by permission of Prentice-Hall, Englewood 
Cliffs, N.J. 

Communications December 1972 
of Volume 15 
the ACM Number 12 



Expected Benefits of Modular Programming 

The benefits expected of modular programming are: 
(1) managerial--development time should be shortened 
because separate groups would work on each module 
with little need for communication: (2) product flexi- 
b i l i t y - i t  should be possible to make drastic changes to 
one module without a need to change others; (3) com- 
prehensibi l i ty- i t  should be possible to study the 
system one module at a time. The whole system can 
therefore be better designed because it is better under- 
stood. 

What Is Modularization? 

Below are several partial system descriptions called 
modularizations. In this context "module"  is considered 
to be a responsibility assignment rather than a sub- 
program. The modularizations include the design deci- 
sions which must be made before the work on inde- 
pendent modules can begin. Quite different decisions 
are included for each alternative, but in all cases the 
intention is to describe all "system level" decisions (i.e. 
decisions which affect more than one module). 

Example System 1: A KWIC Index Production System 

The following description of a KWIC index will 
suffice for this paper. The KWIC index system accepts an 
ordered set of lines, each line is an ordered set of words, 
and each word is an ordered set of characters. Any line 
may be "circularly shifted" by repeatedly removing the 
first word and appending it at the end of the line. The 
KWXC index system outputs a listing of all circular shifts 
of all lines in alphabetical order. 

This is a small system. Except under extreme cir- 
cumstances (huge data base, no supporting software), 
such a system could be produced by a good programmer 
within a week or two. Consequently, none of the 
difficulties motivating modular programming are im- 
portant for this system. Because it is impractical to 
treat a large system thoroughly, we must go through 
the exercise of treating this problem as if it were a large 
project. We give one modularization which typifies 
current approaches, and another which has been used 
successfully in undergraduate class projects. 

Modularlzation 1 
We see the following modules: 
Module 1: Input. This module reads the data lines 

from the input medium and stores them in core for 
processing by the remaining modules. The characters 
are packed four to a word, and an otherwise unused 
character is used to indicate the end of a word. An index 
is kept to show the starting address of each line. 

Module 2: Circular Shift. This module is called after 
the input module has completed its work. It prepares an 
index which gives the address of the first character of 
each circular shift, and the original index of the line in 
the array made up by module 1. It leaves its output in 
core with words in pairs (original line number, starting 
address). 

Module 3: Alphabetizing. This module takes as 
input the arrays produced by modules 1 and 2. It 
produces an array in the same format as that produced 
by module 2. In this case, however, the circular shifts 
are listed in another order (alphabetically). 

Module 4: Output. Using the arrays produced by 
module 3 and module 1, this module produces a nicely 
formatted output listing all of the circular shifts. In a 
sophisticated system the actual start of each line will 
be marked, pointers to further information may be 
inserted, and the start of the circular shift may actually 
not be the first word in the line, etc. 

Module 5: Master Control. This module does little 
more than control the sequencing among the other four 
modules. It may also handle error messages, space 
allocation, etc. 

It should be clear that the above does not constitute 
a definitive document. Much more information would 
have to be supplied before work could start. The defin- 
ing documents would include a number of pictures 
showing core formats, pointer conventions, calling 
conventions, etc. All of the interfaces between the four 
modules must be specified before work could begin. 

This is a modularization in the sense meant by all 
proponents of modular programming. The system is 
divided into a number of  modules with well-defined 
interfaces; each one is small enough and simple enough 
to be thoroughly understood and well programmed. 
Experiments on a small scale indicate that this is 
approximately the decomposition which would be 
proposed by most programmers for the task specified. 

Modularization 2 
We see the following modules: 
Module 1: Line Storage. This module consists of a 

number of functions or subroutines which provide the 
means by which the user of the module may call on it. 
The function call CHAR(r,w,c) will have as value an 
integer representing the cth character in the rth line, 
wth word. A call such as SETCHAR(r,w,c,d) will cause 
the cth character in the wth word of the rth line to be 
the character represented by d (i.e. CHAR(r,w,c) = d). 
WORDS(r) returns as value the number of  words in 
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line r. There are certain restrictions in the way that these 
routines may be called; if these restrictions are violated 
the routines " t rap"  to an error-handling subroutine 
which is to be provided by the users of  the routine. 
Additional routines are available which reveal to the 
caller the number of words in any line, the number of 
lines currently stored, and the number of characters in 
any word. Functions DELINE and DELWRD are 
provided to delete portions of lines which have already 
been stored. A precise specification of a similar module 
has been given in [3] and [8] and we will not repeat it 
here. 

Module 2: INPUT. This module reads the original 
lines from the input media and calls the line storage 
module to have them stored internally. 

Module 3: Circular Shifter. The principal functions 
provided by this module are analogs of functions pro- 
vided in module I. The module creates the impres- 
sion that we have created a line holder containing 
not all of  the lines but all of  the circular shifts of the 
lines. Thus the function call CSCHAR(I,w,c) provides 
the value representing the cth character in the wth 
word of the lth circular shift. It is specified that (1) 
if i < j then the shifts of line i precede the shifts of line 
j,  and (2) for each line the first shift is the original 
line, the second shift is obtained by making a one-word 
rotation to the first shift, etc. A function CSSETUP is 
provided which must be called before the other functions 
have their specified values. For  a more precise specifica- 
tion of such a module see [8]. 

Module 4: Alphabetizer. This module consists 
principally of  two functions. One, ALPH, must be 
called before the other will have a defined value. The 
second, ITH, will serve as an index. ITH(i) will give the 
index of the circular shift which comes ith in the 
alphabetical ordering. Formal definitions of these 
functions are given [8]. 

Module 5: Output. This module will give the desired 
printing of set of  lines or circular shifts. 

Module 6: Master Control. Similar in function to the 
modularization above. 

Comparison of the Two Modularizations 
General. Both schemes will work. The first is quite 

conventional; the second has been used successfully in 
a class project [7]. Both will reduce the programming to 
the relatively independent programming of  a number of  
small, manageable, programs. 

Note first that the two decompositions may share 
all data representations and access methods. Our 
discussion is about two different ways of  cutting up 
what may be the same object. A system built according 
to decomposition 1 could conceivably be identical 
after assembly to one built according to decomposition 
2. The differences between the two alternatives are in 
the way that they are divided into the work assignments, 
and the interfaces between modules. The algorithms 
used in both cases might be identical. The systems are 

substantially different even if identical in the runnable 
representation. This is possible because the runnable 
representation need only be used for running; other 
representations are used for changing, documenting, 
understanding, etc. The two systems will not be identical 
in those other representations. 

Changeability. There are a number of design de- 
cisions which are questionable and likely to change 
under many circumstances. This is a partial list. 

1. Input format. 
2. The decision to have all lines stored in core. For  
large jobs it may prove inconvenient or impractical to 
keep all of  the lines in core at any one time. 
3. The decision to pack the characters four to a word. 
In cases where we are working with small amounts of 
data it may prove undesirable to pack the characters; 
time will be saved by a character per word layout. In 
other cases we may pack, but in different formats. 
4. The decision to make an index for the c i rcular '  
shifts rather that actually store them as such. Again, for 
a small index or a large core, writing them out may be 
the preferable approach. Alternatively, we may choose 
to prepare nothing during CSSETUP. All computation 
could be done during the calls on the other functions 
such as CSCHAR. 
5. The decision to alphabetize the list once, rather 
than either (a) search for each item when needed, or 
(b) partially alphabetize as is done in Hoare's  rIND 
[2]. In a number of circumstances it would be advan- 
tageous to distribute the computation involved in 
alphabetization over the time required to produce the 
index. 

By looking at these changes we can see the differences 
between the two modularizations. The first change is 
confined to one module in both decompositions. For  the 
first decomposition the second change would result in 
changes in every module! The same is true of the third 
change. In the first decomposition the format of the 
line storage in core must be used by all of the programs. 
In the second decomposition the story is entirely 
different. Knowledge of the exact way that the lines are 
stored is entirely hidden from all but module 1. Any 
change in the manner of  storage can be confined to that 
module! 

In some versions of  this system there was an addi- 
tional module in the decomposition. A symbol table 
module (as specified in [3]) was used within the line 
storage module. This fact was completely invisible to 
the rest of  the system. 

The fourth change is confined to the circular shift 
module in the second decomposition, but in the first 
decomposition the alphabetizer and the output routines 
will also know of  the change. 

The fifth change will also prove difficult in the first 
decomposition. The output module will expect the index 
to have been completed before it began. The alpha- 
betizer module in the second decomposition was 
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designed so that a user could not detect when the 
alphabetization was actually done. No other module 
need be changed. 

Independent Development. In the first modularization 
the interfaces between the modules are the fairly com- 
plex formats and table organizations described above. 
These represent design decisions which cannot be taken 
lightly. The table structure and organization are es- 
sential to the efficiency of the various modules and must 
be designed carefully. The development of those formats 
will be a major part of the module development and 
that part must be a joint  effort among the several 
development groups. In the second modularization the 
interfaces are more abstract; they consist primarily in 
the function names and the numbers and types of the 
parameters. These are relatively simple decisions and 
the independent development of modules should 
begin much earlier. 

Comprehensibility. To understand the output module 
in the first modularization, it will be necessary to 
understand something of the alphabetizer, the circular 
shifter, and the input module. There will be aspects of 
the tables used by output which will only make sense 
because of the way that the other modules work. There 
will be constraints on the structure of the tables due to 
the algorithms used in the other modules. The system 
will only be comprehensible as a whole. It is my sub- 
jective judgment that this is not true in the second 
modularization. 

The Criteria 
Many readers will now see what criteria were used 

in each decomposition. In the first decomposition the 
criterion used was to make each major step in the 
processing a module. One might say that to get the first 
decomposition one makes a flowchart. This is the most 
common approach to decomposition or modulariza- 
tion. It is an outgrowth of  all programmer training 
which teaches us that we should begin with a rough 
flowchart and move from there to a detailed imple- 
mentation. The flowchart was a useful abstraction for 
systems with on the order of 5,000-10,000 instructions, 
but as we move beyond that it does not appear to be 
sufficient; something additional is needed. 

The second decomposition was made using 'fin- 
formation hiding" [4] as a criterion. The modules no 
longer correspond to steps in the processing. The line 
storage module, for example, is used in almost every 
action by the system. Alphabetization may or may not 
correspond to a phase in the processing according to 
the method used. Similarly, circular shift might, in some 
circumstances, not make any table at all but calculate 
each character as demanded. Every module in the 
second decomposition is characterized by its knowledge 
of a design decision which it hides from all others. Its 
interface or definition was chosen to reveal as little as 
possible about its inner workings. 
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Improvement in Circular Shift Module 
To illustrate the impact of such a criterion let us 

take a closer look at the design of the circular shift 
module from the second decomposition. Hindsight now 
suggests that this definition reveals more information 
than necessary. While we carefully hid the method 
of storing or calculating the list of circular shifts, we 
specified an order to that list. Programs could be effec- 
tively written if we specified only (I) that the lines 
indicated in circular shift's current definition will all 
exist in the table, (2) that no one of them would be 
included twice, and (3) that an additional function 
existed which would allow us to identify the original 
line given the shift. By prescribing the order for the 
shifts we have given more information than necessary 
and so unnecessarily restricted the class of systems that 
we can build without changing the definitions. For  
example, we have not allowed for a system in which the 
circular shifts were produced in alphabetical order, 
ALPH is empty, and ITH simply returns its argument 
as a value. Our failure to do this in constructing the 
systems with the second decomposition must clearly be 
classified as a design error. 

In addition to the general criteria that each module 
hides some design decision from the rest of the system, 
we can mention some specific examples of decom- 
positions which seem advisable. 

1. A data structure, its internal linkings, accessing 
procedures and modifying procedures are part of a 
single module. They are not shared by many modules as 
is conventionally done. This notion is perhaps just  an 
elaboration of  the assumptions behind the papers of  
Balzer [9] and Mealy [10]. Design with this in mind is 
clearly behind the design of BLISS [11]. 
2. The sequence of  instructions necessary to call a given 
routine and the routine itself are part of the same module. 
This rule was not relevant in the Fortran systems used 
for experimentation but it becomes essential for systems 
constructed in an assembly language. There are no 
perfect general calling sequences for real machines and 
consequently they tend to vary as we continue our 
search for the ideal sequence. By assigning responsibility 
for generating the call to the person responsible for the 
routine we make such improvements easier and also 
make it more feasible to have several distinct sequences 
in the same software structure. 
3. The formats of  control blocks used in queues in 
operating systems and similar programs must be hidden 
within a "control  block module." It is conventional to 
make such formats the interfaces between various 
modules. Because design evolution forces frequent 
changes on control block formats such a decision often 
proves extremely costly. 
4. Character codes, alphabetic orderings, and similar 
data should be hidden in a module for greatest flexibility. 
5. The sequence in which certain items will be proc- 
essed should (as far as practical) be hidden within a 
single module. Various changes ranging from equip- 
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ment additions to unavailability of certain resources in 
an operating system make sequencing extremely vari- 
able. 

Efficiency and Implementation 
If  we are not careful the second decomposition will 

prove to be much less efficient than the first. I f  each of  
the functions is actually implemented as a procedure 
with an elaborate calling sequence there will be a great 
deal of such calling due to the repeated switching 
between modules. The first decomposition will not 
suffer from this problem because there is relatively in- 
frequent transfer of control between modules. 

To save the procedure call overhead, yet gain the 
advantages that we have seen above, we must implement 
these modules in an unusual way. In many cases the 
routines will be best inserted into the code by an 
assembler; in other cases, highly specialized and efficient 
transfers would be inserted. To successfully and 
efficiently make use of the second type of  decomposition 
will require a tool by means of which programs may be 
written as if the functions were subroutines, but as- 
sembled by whatever implementation is appropriate. If  
such a technique is used, the separation between 
modules may not be clear in the final code. For  that 
reason additional program modification features would 
also be useful. In other words, the several representa- 
tions of the program (which were mentioned earlier) 
must be maintained in the machine together with a 
program performing mapping between them. 

A Decomposition Common to a Compiler and Interpretor 
for the Same Language 

In an earlier attempt to apply these decomposition 
rules to a design project we constructed a translator for 
a Markov algorithm expressed in the notation described 
in [6]. Although it was not our intention to investigate 
the relation between compiling and interpretive trans- 
lators of a langugage, we discovered that our decom- 
position was valid for a pure compiler and several 
varieties of  interpretors for the language. Although there 
would be deep and substantial differences in the final 
running representations of each type of compiler, we 
found that the decisions implicit in the early decom- 
position held for all. 

This would not have been true if we had divided 
responsibilities along the classical lines for either a 
compiler or interpretor (e.g. syntax recognizer, code 
generator, run time routines for a compiler). Instead 
the decomposition was based upon the hiding of various 
decisions as in the example above. Thus register repre- 
sentation, search algorithm, rule interpretation etc. were 
modules and these problems existed in both compiling 
and interpretive translators. Not  only was the decom- 
position valid in all cases, but many of the routines 
could be used with only slight changes in any sort of  
translator. 

This example provides additional support for the 

statement that the order in time in which processing is 
expected to take place should not be used in making 
the decomposition into modules. It further provides 
evidence that a careful job  of decomposition can result 
in considerable carryover of  work from one project to 
another. 

A more detailed discussion of  this example was 
contained in [8]. 

Hierarchical Structure 

We can find a program hierarchy in the sense illus- 
trated by Dijkstra [5] in the system defined according to 
decomposition 2. If  a symbol table exists, it functions 
without any of the other modules, hence it is on level 1. 
Line storage is on level 1 if no symbol table is used or it 
is on level 2 otherwise. Input and Circular Shifter re- 
quire line storage for their functioning. Output and 
Alphabetizer will require Circular Shifter, but since 
Circular Shifter and line holder are in some sense 
compatible, it would be easy to build a parameterized 
version of  those routines which could be used to 
alphabetize or print out either the original lines or the 
circular shifts. In the first usage they would not require 
Circular Shifter; in the second they would. In other 
words, our design has allowed us to have a single 
representation for programs which may run at either 
of two levels in the hierarchy. 

In discussions of system structure it is easy to confuse 
the benefits of a good decomposition with those of a 
hierarchical structure. We have a hierarchical structure 
if a certain relation may be defined between the modules 
or programs and that relation is a partial ordering. The 
relation we are concerned with is "uses" or "depends 
upon."  It is better to use a relation between programs 
since in many cases one module depends upon only 
part of another module (e.g. Circular Shifter depends 
only on the output parts of  the line holder and not on 
the correct working of  SETWORD). It is conceivable 
that we could obtain the benefits that we have been 
discussing without such a partial ordering, e.g. if all 
the modules were on the same level. The partial ordering 
gives us two additional benefits. First, parts of the 
system are benefited (simplified) because they use the 
services of  lower 2 levels. Second, we are able to cut off 
the upper levels and still have a usable and useful 
product. For  example, the symbol table can be used in 
other applications; the line holder could be the basis of  
a question answering system. The existence of  the 
hierarchical structure assures us that we can "prune"  
off the upper levels of  the tree and start a new tree on 
the old trunk. If we had designed a system in which the 
"low level" modules made some use of  the "high level" 
modules, we would not have the hierarchy, wewouldfind 
it much harder to remove portions of the system, and 
"level" would not have much meaning in the system. 

Here "lower" means "lower numbered." 
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Since it is conceivable that  we could have a system 
with the type o f  decompos i t ion  shown in version 1 
( impor tan t  design decisions in the interfaces) but  
retaining a hierarchical structure, we must  conclude 
that  hierarchical structure and "c lean"  decomposi t ion  
are two desirable but  independent properties of  a 
system structure. 

Conclusion 

We have tried to demonst ra te  by these examples tha t  
it is a lmost  always incorrect  to begin the decompos i t ion  
o f  a system into modules  on the basis o f  a flowchart .  
We propose  instead that  one begins with a list o f  
difficult design decisions or  design decisions which are 
likely to change.  Each  module  is then designed to hide 
such a decision f rom the others.  Since, in mos t  cases, 
design decisions t ranscend time of  execution, modules  
will no t  cor respond  to steps in the processing. To  
achieve an efficient implementa t ion  we must  abandon  
the assumpt ion  that  a module  is one or  more  sub- 
routines,  and instead allow subrout ines and programs  
to be assembled collections o f  code f rom various 
modules.  
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